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CHAPTER

8
The Discrete Fourier Transform

Fourier analysis is a family of mathematical techniques, all based on decomposing signals into
sinusoids.  The discrete Fourier transform (DFT) is the family member used with digitized
signals.  This is the first of four chapters on the real DFT, a version of the discrete Fourier
transform that uses real numbers to represent the input and output signals.  The complex DFT,
a more advanced technique that uses complex numbers, will be discussed in Chapter 31.  In this
chapter we look at the mathematics and algorithms of the Fourier decomposition, the heart of the
DFT.

The Family of Fourier Transform

Fourier analysis is named after Jean Baptiste Joseph Fourier (1768-1830),
a French mathematician and physicist.  (Fourier is pronounced: , and isfor@ ē@ā
always capitalized).  While many contributed to the field, Fourier is honored
for his mathematical discoveries and insight into the practical usefulness of the
techniques.  Fourier was interested in heat propagation, and presented a paper
in 1807 to the Institut de France on the use of sinusoids to represent
temperature distributions.  The paper contained the controversial claim that any
continuous periodic signal could be represented as the sum of properly chosen
sinusoidal waves.  Among the reviewers were two of history's most famous
mathematicians, Joseph Louis Lagrange (1736-1813), and Pierre Simon de
Laplace (1749-1827).  

While Laplace and the other reviewers voted to publish the paper, Lagrange
adamantly protested.  For nearly 50 years, Lagrange had insisted that such an
approach could not be used to represent signals with corners ,  i.e.,
discontinuous slopes, such as in square waves.  The Institut de France bowed
to the prestige of Lagrange, and rejected Fourier's work.  It was only after
Lagrange died that the paper was finally published, some 15 years later.
Luckily, Fourier had other things to keep him busy, political activities,
expeditions to Egypt with Napoleon, and trying to avoid the guillotine after the
French Revolution (literally!).
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Who was right?  It's a split decision.  Lagrange was correct in his assertion that
a summation of sinusoids cannot form a signal with a corner.  However, you
can get very close.  So close that the difference between the two has zero
energy.  In this sense, Fourier was right, although 18th century science knew
little about the concept of energy.  This phenomenon now goes by the name:
Gibbs Effect, and will be discussed in Chapter 11. 

Figure 8-1 illustrates how a signal can be decomposed into sine and cosine
waves.  Figure (a) shows an example signal, 16 points long, running from
sample number 0 to 15.  Figure (b) shows the Fourier decomposition of this
signal, nine cosine waves and nine sine waves, each with a different
frequency and amplitude.  Although far from obvious, these 18 sinusoids

add to produce the  waveform in (a).   It should be noted that the objection
made by Lagrange only applies to continuous signals.  For discrete signals,
this decomposition is mathematically exact.  There is no difference between the
signal in (a) and the sum of the signals in (b), just as there is no difference
between 7 and 3+4.

Why are sinusoids used instead of, for instance, square or triangular waves?
Remember, there are an infinite number of ways that a signal can be
decomposed.  The goal of decomposition is to end up with something easier to
deal with than the original signal.  For example, impulse decomposition allows
signals to be examined one point at a time, leading to the powerful technique
of convolution.   The component sine and cosine waves are simpler than the
original signal because they have a property that the original signal does not
have: sinusoidal fidelity.  As discussed in Chapter 5, a sinusoidal input to a
system is guaranteed to produce a sinusoidal output.  Only the amplitude and
phase of the signal can change; the frequency and wave shape must remain the
same.  Sinusoids are the only waveform that have this useful property.  While
square and triangular decompositions are possible, there is no general reason
for them to be useful. 

The general term: Fourier transform, can be broken into four categories,
resulting from the four basic types of signals that can be encountered.
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FIGURE 8-1b
Example of Fourier decomposition. A 16 point signal (opposite page) is decomposed into 9 cosine
waves and 9 sine waves.  The frequency of each sinusoid is fixed; only the amplitude is changed
depending on the shape of the waveform being decomposed. 



The Scientist and Engineer's Guide to Digital Signal Processing144

A signal can be either continuous or discrete, and it can be either periodic or
aperiodic.  The combination of these two features generates the four categories,
described below and illustrated in Fig. 8-2. 

Aperiodic-Continuous
This includes, for example, decaying exponentials and the Gaussian curve.
These signals extend to both positive and negative infinity without repeating in
a periodic pattern.  The Fourier Transform for this type of signal is simply
called the Fourier Transform. 

Periodic-Continuous
Here the examples include: sine waves, square waves, and any waveform that
repeats itself in a regular pattern from negative to positive infinity.  This
version of the Fourier transform is called the Fourier Series.

Aperiodic-Discrete
These signals are only defined at discrete points between positive and negative
infinity, and do not repeat themselves in a periodic fashion.  This type of
Fourier transform is called the Discrete Time Fourier Transform. 

Periodic-Discrete
These are discrete signals that repeat themselves in a periodic fashion from
negative to positive infinity.  This class of Fourier Transform is sometimes
called the Discrete Fourier Series, but is most often called the Discrete
Fourier Transform.  

You might be thinking that the names given to these four types of Fourier
transforms are confusing and poorly organized.  You're right; the names have
evolved rather haphazardly over 200 years.  There is nothing you can do but
memorize them and move on. 

These four classes of signals all extend to positive and negative infinity.  Hold
on, you say!  What if you only have a finite number of samples stored in your
computer, say a signal formed from 1024 points.  Isn't there a version of the
Fourier Transform that uses finite length signals?  No, there isn't.  Sine and
cosine waves are defined as extending from negative infinity to positive
infinity. You cannot use a group of infinitely long signals to synthesize
something finite in length.  The way around this dilemma is to make the finite
data look like an infinite length signal.  This is done by imagining that the
signal has an infinite number of samples on the left and right of the actual
points.  If all these “imagined” samples have a value of zero, the signal looks
discrete and aperiodic, and the Discrete Time Fourier Transform applies.  As
an alternative, the imagined samples can be a duplication of the actual 1024
points.  In this case, the signal looks discrete and periodic, with a period of
1024 samples.  This calls for the Discrete Fourier Transform to be used.
     
As it turns out, an infinite number of sinusoids are required to synthesize a
signal that is aperiodic.  This makes it impossible to calculate the Discrete
Time Fourier Transform in a computer algorithm.  By  elimination, the only
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Type of Transform Example Signal

Fourier Transform

Fourier Series

Discrete Time Fourier Transform

Discrete Fourier Transform

signals that are continious and aperiodic

signals that are continious and periodic

signals that are discrete and aperiodic

signals that are discrete and periodic

FIGURE 8-2
Illustration of the four Fourier transforms.  A signal may be continuous or discrete, and it may be
periodic or aperiodic.  Together these define four possible combinations, each having its own version
of the Fourier transform. The names are not well organized; simply memorize them.  

type of Fourier transform that can be used in DSP is the DFT.   In other words,
digital computers can only work with information that is discrete and finite in
length. When you struggle with theoretical issues, grapple with homework
problems, and ponder mathematical mysteries, you may find yourself using the
first three members of the Fourier transform family.  When you sit down to
your computer, you will only use the DFT.  We will briefly look at these other
Fourier transforms in future chapters.  For now, concentrate on understanding
the Discrete Fourier Transform. 

Look back at the example DFT decomposition in Fig. 8-1.  On the face of it,
it appears to be a 16 point signal being decomposed into 18 sinusoids, each
consisting of 16 points.  In more formal terms, the 16 point signal, shown in
(a), must be viewed as a single period of an infinitely long periodic signal.
Likewise, each of the 18 sinusoids, shown in (b), represents a 16 point segment
from an infinitely long sinusoid.  Does it really matter if we view this as a 16
point signal being synthesized from 16 point sinusoids, or as an infinitely long
periodic signal being synthesized from infinitely long sinusoids?  The answer
is: usually no, but sometimes, yes.  In upcoming chapters we will encounter
properties of the DFT that seem baffling if the signals are viewed as finite, but
become obvious when the periodic nature is considered.   The key point to
understand is that this periodicity is invoked in order to use a mathematical
tool, i.e., the DFT.  It is usually meaningless in terms of where the signal
originated or how it was acquired.
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Each of the four Fourier Transforms can be subdivided into real and
complex versions.  The real version is the simplest, using ordinary numbers
and algebra for the synthesis and decomposition.  For instance,  Fig. 8-1 is
an example of the real DFT.  The complex versions of the four Fourier
transforms are immensely more complicated, requiring the use of complex
numbers.  These are numbers such as: , where j is equal to 3%4 j &1
(electrical engineers use the variable j, while mathematicians use the
variable, i).  Complex mathematics can quickly become overwhelming, even
to those that specialize in DSP.  In fact, a primary goal of this book is to
present the fundamentals of DSP without the use of complex math, allowing
the material to be understood by a wider range of scientists and engineers.
The complex Fourier transforms are the realm of those that specialize in
DSP, and are willing to sink to their necks in the swamp of mathematics.
If you are so inclined, Chapters 30-33 will take you there.  

The mathematical term: transform, is extensively used in Digital Signal
Processing, such as:  Fourier transform, Laplace transform, Z transform,
Hilbert transform, Discrete Cosine transform, etc.  Just what is a transform?
To answer this question, remember what a function is.  A function is an
algorithm or procedure that changes one value into another value.  For
example,  is a function.  You pick some value for x, plug it into they ' 2x%1
equation, and out pops a value for y.  Functions can also change several
values into a single value, such as: , where  and c arey ' 2a % 3b % 4c a, b,
changed into y. 

Transforms are a direct extension of this, allowing both the input and output to
have multiple values.  Suppose you have a signal composed of 100 samples.
If you devise some equation, algorithm, or procedure for changing these 100
samples into another 100 samples, you have yourself a transform.  If you think
it is useful enough, you have the perfect right to attach your last name to it and
expound its merits to your colleagues.  (This works best if you are an eminent
18th century French mathematician).  Transforms are not limited to any specific
type or number of data.  For example, you might have 100 samples of discrete
data for the input and 200 samples of discrete data for the output.   Likewise,
you might have a continuous signal for the input and a continuous signal for the
output.  Mixed signals are also allowed, discrete in and continuous out, and
vice versa.  In short, a transform is any fixed procedure that changes one chunk
of data into another chunk of data.  Let's see how this applies to the topic at
hand: the Discrete Fourier transform. 

Notation and Format of the Real DFT

As shown in Fig. 8-3, the discrete Fourier transform changes an N point input
signal into two  point output signals.  The input signal contains theN/2%1
signal being decomposed, while the two output signals contain the amplitudes
of the component sine and cosine waves (scaled in a way we will discuss
shortly).  The input signal is said to be in the time domain.  This is because
the most common type of signal entering the DFT is composed of
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Time Domain Frequency Domain

x[  ] Re X[  ] Im X[  ]

0 N-1 0 N/2 0 N/2

Forward DFT

Inverse DFT
N/2+1 samples 

(cosine wave amplitudes)
N/2+1 samples

(sine wave amplitudes)

collectively referred to as X[  ]

N samples

FIGURE 8-3
DFT terminology.  In the time domain,  consists of N points running from 0 to .  In the frequency domain,x[ ] N&1
the DFT produces two signals, the real part, written: , and the imaginary part, written: .  Each ofReX[ ] Im X [ ]
these frequency domain signals are  points long, and run from 0 to .  The Forward DFT transforms fromN/2%1 N/2
the time domain to the frequency domain, while the Inverse DFT transforms from the frequency domain to the
time domain. (Take note: this figure describes the real DFT.  The complex DFT, discussed in Chapter 31,
changes N complex points into another set of N complex points).    

samples taken at regular intervals of time.  Of course, any kind of sampled
data can be fed into the DFT, regardless of how it was acquired.  When you
see the term "time domain" in Fourier analysis, it may actually refer to
samples taken over time, or it might be a general reference to any discrete
signal that is being decomposed.  The term frequency domain is used to
describe the amplitudes of the sine and cosine waves (including the special
scaling we promised to explain). 

The frequency domain contains exactly the same information as the time
domain, just in a different form.  If you know one domain, you can calculate
the other.  Given the time domain signal, the process of calculating the
frequency domain is called decomposition, analysis, the forward DFT, or
simply, the DFT.  If you know the frequency domain, calculation of the time
domain is called synthesis, or the inverse DFT.  Both synthesis and analysis
can be represented in equation form and computer algorithms.

The number of samples in the time domain is usually represented by the
variable N.  While N can be any positive integer,  a power of two is usually
chosen, i.e., 128, 256, 512, 1024, etc.  There are two reasons for this.  First,
digital data storage uses binary addressing, making powers of two a natural
signal length.  Second, the most efficient algorithm for calculating the DFT, the
Fast Fourier Transform (FFT), usually operates with N that is a power of two.
Typically, N is selected between 32 and 4096.  In most cases, the samples run
from 0 to , rather than 1 to N. N&1

Standard DSP notation uses lower case letters to represent time domain
signals, such as , , and .  The corresponding upper case letters arex[ ] y[ ] z[ ]
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used to represent their frequency domains, that is, , , and .  ForX [ ] Y[ ] Z [ ]
illustration, assume an N point time domain signal is contained in . Thex[ ]
frequency domain of this signal is called , and consists of two parts, eachX [ ]
an array of  samples.  These are called the Real part of , writtenN/2%1 X [ ]
as: , and the Imaginary part of , written as: . The valuesRe X [ ] X [ ] Im X [ ]
in  are the amplitudes of the cosine waves, while the values in Re X [ ] Im X [ ]
are the amplitudes of the sine waves (not worrying about the scaling factors for
the moment).  Just as the time domain runs from  to , the frequencyx[0] x[N&1]
domain signals run from  to , and from  to .ReX[0] ReX[N/2] ImX[0] Im X [N/2]
Study these notations carefully; they are critical to understanding the equations
in DSP.  Unfortunately, some computer languages don't distinguish between
lower and upper case, making the variable names up to the individual
programmer.  The programs in this book use the array XX[  ] to hold the time
domain signal, and the arrays REX[ ] and IMX[ ] to hold the frequency domain
signals. 

The names real part and imaginary part originate from the complex DFT,
where they are used to distinguish between real and imaginary numbers.
Nothing so complicated is required for the real DFT.  Until you get to Chapter
31,  simply think that "real part" means the cosine wave amplitudes, while
"imaginary part" means the sine wave amplitudes.  Don't let these suggestive
names mislead you; everything here uses ordinary numbers.  

Likewise, don't be misled by the lengths of the frequency domain signals.  It
is common in the DSP literature to see statements such as: "The DFT changes
an N point time domain signal into an N point frequency domain signal."  This
is referring to the complex DFT, where each "point" is a complex number
(consisting of real and imaginary parts).  For now, focus on learning the real
DFT, the difficult math will come soon enough. 

The Frequency Domain's Independent Variable

Figure 8-4 shows an example DFT with .  The time domain signal isN ' 128
contained in the array:  to . The frequency domain signals arex[0] x[127]
contained in the two arrays:  to , and  to .ReX[0] ReX[64] Im X [0] Im X [64]
Notice that 128 points in the time domain corresponds to 65 points in each of
the frequency domain signals, with the frequency indexes running from 0 to 64.
That is, N points in the time domain corresponds to  points in theN/2%1
frequency domain (not  points).  Forgetting about this extra point is aN/2
common bug in DFT programs. 

The horizontal axis of the frequency domain can be referred to in four
different ways, all of which are common in DSP.  In the first method, the
horizontal axis is labeled from 0 to 64, corresponding to the 0 to N/2
samples in the arrays.  When this labeling is used, the index for the
frequency domain is an integer, for example,  and , where kRe X [k] Im X [k]
runs from 0 to  in steps of one.  Programmers like this method becauseN/2
it is how they write code, using an index to access array locations.  This
notation is used in Fig. 8-4b.
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In the second method, used in (c), the horizontal axis is labeled as a fraction
of the sampling rate.  This means that the values along the horizonal axis
always run between 0 and 0.5, since discrete data can only contain frequencies
between DC and one-half the sampling rate.  The index used with this notation
is f, for frequency.  The real and imaginary parts are written:  andReX [ f ]

, where  takes on  equally spaced values between 0 and 0.5.ImX [ f ] f N/2%1
To convert from the first notation, k, to the second notation, , divide thef
horizontal axis by N.  That is, .  Most of the graphs in this book use thisf ' k/N
second method, reinforcing that discrete signals only contain frequencies
between 0 and 0.5 of the sampling rate. 

The third style is similar to the second, except the horizontal axis is
multiplied by 2B.  The index used with this labeling is T, a lower case
Greek omega.  In this notation, the real and imaginary parts are written:

 and , where T takes on  equally spaced valuesReX [T] ImX [T] N/2%1
between 0 and B.  The parameter, T, is called the natural frequency, and
has the units of radians. This is based on the idea that there are 2B radians
in a circle. Mathematicians like this method because it makes the equations
shorter.  For instance, consider how a cosine wave is written in each of
these  f i r s t  th ree  nota t ions :  us ing  k :  ,  us ing :c [n ] ' cos(2Bkn /N) f

, and using T: .  c [n ] ' cos(2B fn ) c [n ] ' cos(Tn )
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ck [i ] ' cos( 2Bki /N )
EQUATION 8-1
Equations for the DFT basis functions.  In
these equations,  and  are theck[ i] sk[ i]
cosine and sine waves, each N points in
length, running from  to . Thei ' 0 N&1
parameter, k, determines the frequency of
the wave.  In an N point DFT, k takes on
values between 0 and .N/2

sk [i ] ' sin ( 2Bki /N )

The fourth method is to label the horizontal axis in terms of the analog
frequencies used in a particular application.  For instance, if the system being
examined has a sampling rate of 10 kHz (i.e., 10,000 samples per second),
graphs of the frequency domain would run from 0 to 5 kHz.  This method has
the advantage of presenting the frequency data in terms of a real world
meaning.   The disadvantage is that it is tied to a particular sampling rate, and
is therefore not applicable to general DSP algorithm development, such as
designing digital filters.

All of these four notations are used in DSP, and you need to become
comfortable with converting between them.  This includes both graphs and
mathematical equations.  To find which notation is being used, look at the
independent variable and its range of values.  You should find one of four
notations:  k (or some other integer index), running from 0 to ;  f,  runningN/2
from 0 to 0.5; T, running from 0 to B; or a frequency expressed in hertz,
running from DC to one-half of an actual sampling rate. 

 
DFT Basis Functions

The sine and cosine waves used in the DFT are commonly called the DFT
basis functions.  In other words, the output of the DFT is a set of numbers
that represent amplitudes.  The basis functions are a set of sine and cosine
waves with unity amplitude.  If you assign each amplitude (the frequency
domain) to the proper sine or cosine wave (the basis functions), the result
is a set of scaled sine and cosine waves that can be added to form the time
domain signal. 

The DFT basis functions are generated from the equations:

where:  is the cosine wave for the amplitude held in , and  isck[ ] ReX[k] sk[ ]
the sine wave for the amplitude held in .  For example, Fig. 8-5 showsIm X [k]
some of the 17 sine and 17 cosine waves used in an  point DFT.  SinceN ' 32
these sinusoids add to form the input signal, they must be the same length as
the input signal.  In this case, each has 32 points running from  to 31.  Thei ' 0
parameter, k, sets the frequency of each sinusoid.  In particular,  is thec1[ ]
cosine wave that makes one complete cycle in N points,  is the cosinec5[ ]
wave that makes five complete cycles in N points, etc.  This is an important
concept in understanding the basis functions; the frequency parameter, k, is
equal to the number of complete cycles that occur over the N points of the
signal.
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FIGURE 8-5
DFT basis functions.  A 32 point DFT has 17 discrete cosine waves and 17 discrete sine waves for
its basis functions.  Eight of these are shown in this figure. These are discrete signals; the continuous
lines are shown in these graphs only to help the reader's eye follow the waveforms. 
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EQUATION 8-2
The synthesis equation.  In this relation,  is the signal beingx [i ]
synthesized, with the index, i, running from 0 to .  N&1 Re X̄ [k ]
and  hold the amplitudes of the cosine and sine waves,Im X̄ [k ]
respectively,  with k running from 0 to .  Equation 8-3 providesN/2
the normalization to change this equation into the inverse DFT.

x[i ] ' j
N /2

k'0

ReX̄ [k ] cos( 2Bki /N) % j
N /2

k'0

ImX̄ [k ] sin( 2Bki /N)

Let's look at several of these basis functions in detail.  Figure (a) shows the
cosine wave .  This is a cosine wave of zero frequency, which is a constantc0[ ]
value of one.  This means that  holds the average value of all the pointsReX[0]
in the time domain signal.  In electronics, it would be said that  holdsReX[0]
the DC offset.   The sine wave of zero frequency, , is shown in (b), as0[ ]
signal composed of all zeros.  Since this can not affect the time domain signal
being synthesized, the value of  is irrelevant, and always set to zero.Im X [0]
More about this shortly. 

Figures (c) & (d) show  & , the sinusoids that complete two cycles inc2[ ] s2[ ]
the N points.  These correspond to  & , respectively.  Likewise,Re X [2] Im X [2]
(e) & (f) show  & , the sinusoids that complete ten cycles in the Nc10[ ] s10[ ]
points.  These sinusoids correspond to the amplitudes held in the arrays

 & .  The problem is, the samples in (e) and (f) no longerReX[10] Im X [10]
look like sine and cosine waves.  If the continuous curves were not present in
these graphs, you would have a difficult time even detecting the pattern of the
waveforms.  This may make you a little uneasy, but don't worry about it.  From
a mathematical point of view, these samples do form discrete sinusoids, even
if your eye cannot follow the pattern.   

The highest frequencies in the basis functions are shown in (g) and (h). These
are  & , or in this example,  & .  The discrete cosinecN/2[ ] sN/2[ ] c16[ ] s16[ ]
wave alternates in value between 1 and -1, which can be interpreted as
sampling a continuous sinusoid at the peaks.  In contrast, the discrete sine wave
contains all zeros, resulting from sampling at the zero crossings.  This makes
the value of  the same as , always equal to zero, and notIm X [N/2] Im X [0]
affecting the synthesis of the time domain signal.  

Here's a puzzle: If there are N samples entering the DFT, and  samplesN%2
exiting, where did the extra information come from?  The answer:  two of the
output samples contain no information, allowing the other N samples to be fully
independent.   As you might have guessed, the  points that carry no information
are  and , the samples that always have a value of zero.Im X [0] Im X [N/2]

Synthesis, Calculating the Inverse DFT

Pulling together everything said so far, we can write the synthesis equation:
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EQUATIONS 8-3
Conversion between the sinusoidal
amplitudes and the frequency domain
values. In these equations, Re X̄ [k ]
and  hold the amplitudes ofIm X̄ [k ]
the cosine and sine waves needed for
synthesis, while  and Re X [k ] Im X [k ]
hold the real and imaginary parts of
the frequency domain. As usual, N is
the number of points in the time
domain signal, and k is an index that
runs from 0 to N/2. 

ReX̄ [k ] '
ReX [k ]

N / 2

ImX̄ [k ] ' &
ImX [k ]

N / 2

ReX̄ [ 0] '
ReX [0 ]

N

ReX̄ [N/2 ] ' ReX [N/2 ]
N

except for two special cases:

In words, any N point signal, , can be created by adding  cosinex[i] N/2% 1
waves and  sine waves.  The amplitudes of the cosine and sine wavesN/2% 1
are held in the arrays  and , respectively.  The synthesisIm X̄ [k] Re X̄ [k]
equation multiplies these amplitudes by the basis functions to create a set of
scaled sine and cosine waves.  Adding the scaled sine and cosine waves
produces the time domain signal, .x[i]

In Eq. 8-2, the arrays  are called  and , rather than  andIm X̄ [k] Re X̄ [k] Im X [k]
.  This is because the amplitudes needed for synthesis (called in thisRe X [k]

discussion:  and  ), are slightly different from the frequencyIm X̄ [k] Re X̄ [k]
domain of a signal  (denoted by:  and ).   This is the scalingIm X [k] Re X [k]
factor issue we referred to earlier.  Although the conversion is only a simple
normalization, it is a common bug in computer programs.  Look out for it!  In
equation form, the conversion between the two is  given by:

Suppose you are given a frequency domain representation, and asked to
synthesize the corresponding time domain signal.  To start, you must find the
amplitudes of the sine and cosine waves.  In other words, given  andIm X [k]

, you must find  and .  Equation 8-3 shows this in aRe X [k] Im X̄ [k] Re X̄ [k]
mathematical form.  To do this in a computer program, three actions must be
taken.  First, divide all the values in the frequency domain by .  Second,N/2
change the sign of all the imaginary values.  Third, divide the first and last
samples in the real part,  and , by two.  This provides theReX[0] ReX[N/2 ]
amplitudes needed for the synthesis described by Eq. 8-2.  Taken together, Eqs.
8-2 and 8-3 define the inverse DFT.  

The entire Inverse DFT is shown in the computer program listed in Table
8-1.  There are two ways that the synthesis (Eq. 8-2) can be programmed,
and both are shown.  In the first method, each of the scaled sinusoids are
generated one at a time and added to an accumulation array, which ends
up becoming the time domain signal.  In the second method, each sample in
the time domain signal is calculated one at a time, as the sum of all the
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100 'THE INVERSE DISCRETE FOURIER TRANSFORM  
110 'The time domain signal, held in XX[ ], is calculated from the frequency domain signals, 
120 'held in REX[ ] and IMX[ ].    
130 '
140 DIM XX[511]          'XX[ ]  holds the time domain signal
150 DIM REX[256]           'REX[ ] holds the real part of the frequency domain
160 DIM IMX[256]           'IMX[ ] holds the imaginary part of the frequency domain
170 '
180 PI = 3.14159265          'Set the constant, PI
190 N% = 512               'N% is the number of points in XX[ ]
200 '
210 GOSUB XXXX             'Mythical subroutine to load data into REX[ ] and IMX[ ]     
220 '
230 
240 ' 'Find the cosine and sine wave amplitudes using Eq. 8-3
250 FOR K% = 0 TO 256        
260   REX[K%] =  REX[K%] / (N%/2)  
270   IMX[K%]  = -IMX[K%] / (N%/2)  
280 NEXT K%                       
290 '
300 REX[0] = REX[0] / 2
310 REX[256] = REX[256] / 2
320 '
330 '
340 FOR I% = 0 TO 511      'Zero XX[ ] so it can be used as an accumulator
350   XX[I%] = 0
360 NEXT I%
370 '
380 ' Eq. 8-2  SYNTHESIS METHOD #1.  Loop through each 
390 ' frequency generating the entire length of the sine and cosine  
400 ' waves, and add them to the accumulator signal, XX[ ] 
410 '
420 FOR K% = 0 TO 256      'K% loops through each sample in REX[ ] and IMX[ ]
430   FOR I% = 0 TO 511 'I% loops through each sample in XX[ ]
440     '
450     XX[I%] = XX[I%] + REX[K%] * COS(2*PI*K%*I%/N%)
460     XX[I%] = XX[I%] + IMX[K%] * SIN(2*PI*K%*I%/N%)
470     '
480   NEXT I%
490 NEXT K%
500 '
510 END 

 Alternate code for lines 380 to 510

380 ' Eq. 8-2  SYNTHESIS METHOD #2.  Loop through each 
390 ' sample in the time domain, and sum the corresponding 
400 ' samples from each cosine and sine wave 
410 '
420 FOR I% = 0 TO 511 'I% loops through each sample in XX[ ]
430   FOR K% = 0 TO 256      'K% loops through each sample in REX[ ] and IMX[ ]
440     '
450     XX[I%] = XX[I%] + REX[K%] * COS(2*PI*K%*I%/N%)
460     XX[I%] = XX[I%] + IMX[K%] * SIN(2*PI*K%*I%/N%)
470     '
480   NEXT K%
490 NEXT I%
500 '
510 END

TABLE 8-1
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FIGURE 8-6
Example of the Inverse DFT.  Figure (a) shows an example time domain signal, an impulse at sample zero with
an amplitude of 32.  Figure (b) shows the real part of the frequency domain of this signal, a constant value of
32.  The imaginary part of the frequency domain (not shown) is composed of all zeros.  Figure(c) shows the
amplitudes of the cosine waves needed to reconstruct (a) using Eq. 8-2.  The values in (c) are found from (b)
by using Eq. 8-3.
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corresponding samples in the cosine and sine waves.  Both methods produce the
same result.  The difference between these two programs  is very minor; the
inner and outer loops are swapped during the synthesis. 

Figure 8-6 illustrates the operation of the Inverse DFT, and the slight
differences between the frequency domain and the amplitudes needed for
synthesis.  Figure 8-6a is an example signal we wish to synthesize, an impulse
at sample zero with an amplitude of 32.  Figure 8-6b shows the frequency
domain representation of this signal.  The real part of the frequency domain is
a constant value of 32.  The imaginary part (not shown) is composed of all
zeros.   As discussed in the next chapter, this is an important DFT pair: an
impulse in the time domain corresponds to a constant value in the frequency
domain.  For now, the important point is that (b) is the DFT of (a), and (a) is
the Inverse DFT of (b). 
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FIGURE 8-7
The bandwidth of frequency domain
samples.  Each sample in the frequency
domain can be thought of as being
contained in a frequency band of width
2/N, expressed as a fraction of the total
bandwidth. An exception to this is the
first and last samples, which have a
bandwidth only one-half this wide, 1/N.
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Equation 8-3 is used to convert the frequency domain signal, (b),  into  the
amplitudes of the cosine waves, (c).  As shown, all of the cosine waves have
an amplitude of two, except for samples 0 and 16, which have a value of one.
The amplitudes of the sine waves are not shown in this example because they
have a value of zero, and therefore provide no contribution. The synthesis
equation, Eq. 8-2, is then used to convert the amplitudes of the cosine waves,
(b), into the time domain signal, (a).

This describes how the frequency domain is different from the sinusoidal
amplitudes, but it doesn't explain why it is different.  The difference occurs
because the frequency domain is defined as a spectral density.   Figure 8-7
shows how this works.  The example in this figure is the real part of the
frequency domain of a 32 point signal.  As you should expect, the samples run
from  0 to 16, representing 17 frequencies equally spaced between 0 and 1/2
of the sampling rate.  Spectral density describes how much signal (amplitude)
is present per unit of bandwidth.  To convert the sinusoidal amplitudes into a
spectral density, divide each amplitude by the bandwidth represented by each
amplitude. This brings up the next issue: how do we determine the bandwidth
of each of the discrete frequencies in the frequency domain?

As shown in the figure, the bandwidth can be defined by drawing dividing
lines between the samples.  For instance, sample number 5 occurs in the
band between 4.5 and 5.5; sample number 6 occurs in the band between 5.5
and 6.5, etc.  Expressed as a fraction of the total bandwidth (i.e., ), theN/2
bandwidth of each sample is .  An exception to this is the samples on2/N
each end, which have one-half of this bandwidth, .  This accounts for1/N
the  scaling factor between the sinusoidal amplitudes and frequency2/N
domain, as well as the additional factor of two needed for the first and last
samples. 

Why the negation of the imaginary part?  This is done solely to make the real
DFT consistent with its big brother, the complex DFT.  In Chapter 29 we will
show that it is necessary to make the mathematics of the complex DFT work.
When dealing only with the real DFT, many authors do not include this
negat ion .   For  tha t  mat ter ,  many authors  do  not  even inc lude
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the  scaling factor.  Be prepared to find both of these missing in some2/N
discussions.   They are included here for a tremendously important reason:  The
most efficient way to calculate the DFT is through the Fast Fourier Transform
(FFT) algorithm, presented in Chapter 12.   The FFT generates a frequency
domain defined according to Eq. 8-2 and 8-3.  If you start messing with these
normalization factors, your programs containing the FFT are not going to work
as expected.   

Analysis, Calculating the DFT

The DFT can be calculated in three completely different ways.  First, the
problem can be approached as a set of simultaneous equations.  This
method is useful for understanding the DFT, but it is too inefficient to be
of practical use.  The second method brings in an idea from the last chapter:
correlation.  This is based on detecting a known waveform in another
signal. The third method, called the Fast Fourier Transform (FFT), is an
ingenious algorithm that decomposes a DFT with N points, into N DFTs
each with a single point.  The FFT is typically hundreds of times faster than
the other methods.  The first two methods are discussed here, while the FFT
is the topic of Chapter 12.  It is important to remember that all three of
these methods produce an identical output. Which should you use?  In actual
practice, correlation is the preferred technique if the DFT has less than
about 32 points, otherwise the FFT is used.

DFT by Simultaneous Equations
Think about the DFT calculation in the following way.  You are given N values
from the time domain, and asked to calculate the N values of the frequency
domain (ignoring the two frequency domain values that you know must be
zero).  Basic algebra provides the answer: to solve for N unknowns, you must
be able to write N linearly independent equations.  To do this, take the first
sample from each sinusoid and add them together.  The sum must be equal to
the first sample in the time domain signal, thus providing the first equation.
Likewise, an equation can be written for each of the remaining points in the
time domain signal, resulting in the required N equations.  The solution can
then be found by using established methods for solving simultaneous equations,
such as Gauss Elimination. Unfortunately, this method requires a tremendous
number of  calculations, and is virtually never used in DSP.  However, it is
important for another reason, it shows why it is possible to decompose a signal
into sinusoids, how many sinusoids are needed, and that the basis functions
must be linearly independent (more about this shortly). 

DFT by Correlation
Let's move on to a better way, the standard way of calculating the DFT.  An
example will show how this method works.  Suppose we are trying to calculate
the DFT of a 64 point signal.  This means we need to calculate  the 33 points
in the real part, and the 33 points in the imaginary part of the frequency
domain.  In this example we will only show how to calculate a single sample,

, i.e., the amplitude of the sine wave that makes three complete cyclesIm X [3]
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EQUATION 8-4
The analysis equations for calculating
the DFT.  In these equations,  is thex[i]
time domain signal being analyzed, and

 &  are the frequencyRe X [k] Im X [k]
domain signals being calculated.  The
index i runs from 0 to , while theN&1
index k runs from 0 to .N/2

ReX [k] ' j
N & 1

i ' 0

x [i ] cos(2Bk i /N )

ImX [k] ' & j
N & 1

i ' 0
x [i ] sin(2Bk i /N )

between point 0 and point 63.  All of the other frequency domain values are
calculated in a similar manner. 

Figure 8-8 illustrates using correlation to calculate .  Figures (a) andIm X [3]
(b) show two example time domain signals, called:  and ,x1[ ] x2[ ]
respectively.  The first signal, , is composed of nothing but a sine wavex1[ ]
that makes three cycles between points 0 and 63.   In contrast,  isx2[ ]
composed of several sine and cosine waves, none of which make three cycles
between points 0 and 63.  These two signals illustrate what the algorithm for
calculating  must do.  When fed , the algorithm must produce aIm X [3] x1[ ]
value of 32, the amplitude of the sine wave present in the signal (modified by
the scaling factors of Eq. 8-3).  In comparison, when the algorithm is fed the
other signal, , a value of zero must be produced, indicating that thisx2[ ]
particular sine wave is not present in this signal.  

The concept of correlation was introduced in Chapter 7.  As you recall, to
detect a known waveform contained in another signal, multiply the two
signals and add all the points in the resulting signal.  The single number
that results from this procedure is a measure of how similar the two signals
are.   Figure 8-8 illustrates this approach.  Figures (c) and (d) both display
the signal we are looking for, a sine wave that makes 3 cycles between
samples 0 and 63.  Figure (e) shows the result of multiplying (a) and (c).
Likewise, (f) shows the result of multiplying (b) and (d).   The sum of all
the points in (e) is 32, while the sum of all the points in (f) is zero, showing
we have found the desired algorithm.

The other samples in the frequency domain are calculated in the same way.
This procedure is formalized in the analysis equation, the mathematical way
to calculate the frequency domain from the time domain:

In words, each sample in the frequency domain is found by multiplying the time
domain signal by the sine or cosine wave being looked for, and adding the
resulting points.  If someone asks you what you are doing, say with confidence:
"I am correlating the input signal with each basis function."  Table 8-2 shows
a computer program for calculating the DFT in this way. 

The analysis equation does not require special handling of the first and last
points, as did the synthesis equation.  There is, however, a negative sign in the
imaginary part in Eq. 8-4.  Just as before, this negative sign makes the real
DFT consistent with the complex DFT, and is not always included.
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FIGURE 8-8
Two example signals, (a) and (b), are analyzed for containing the specific basis function shown in (c) and (d).
Figures (e) and (f) show the result of multiplying each example signal by the basis function.  Figure (e) has an
average of 0.5, indicating that contains the basis function with an amplitude of 1.0.  Conversely, (f) hasx1[ ]
a zero average, indicating that  does not contain the basis function.x2[ ]
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In order for this correlation algorithm to work, the basis functions must have
an interesting property: each of them must be completely uncorrelated with
all of the others.  This means that if  you multiply any two of the basis
functions, the sum of the resulting points will be equal to zero.  Basis
functions that have this property are called orthognal .  Many other
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100 'THE DISCRETE FOURIER TRANSFORM 
110 'The frequency domain signals, held in REX[ ] and IMX[ ], are calculated from
120 'the time domain signal, held in XX[ ].
130 '
140 DIM XX[511]          'XX[ ]  holds the time domain signal
150 DIM REX[256]            'REX[ ] holds the real part of the frequency domain
160 DIM IMX[256]           'IMX[ ] holds the imaginary part of the frequency domain
170 '
180 PI = 3.14159265          'Set the constant, PI
190 N% = 512               'N% is the number of points in XX[ ]
200 '
210 GOSUB XXXX             'Mythical subroutine to load data into XX[ ]      
220 '
230 '
240 FOR K% = 0 TO 256 'Zero REX[ ] & IMX[ ] so they can be used as accumulators 
250   REX[K%] = 0
260   IMX[K%] = 0
270 NEXT K%
280 '
290 ' 'Correlate XX[ ] with the cosine and sine waves, Eq. 8-4
300 '
310 FOR K% = 0 TO 256      'K% loops through each sample in REX[ ] and IMX[ ]
320   FOR I% = 0 TO 511 'I% loops through each sample in XX[ ]
330     '
340     REX[K%] = REX[K%] + XX[I%] * COS(2*PI*K%*I%/N%)
350     IMX[K%] = IMX[K%]  - XX[I%] * SIN(2*PI*K%*I%/N%)
360     '
370   NEXT I%
380 NEXT K%
390 '
400 END

TABLE 8-2

orthognal basis functions exist, including: square waves, triangle waves,
impulses, etc.  Signals can be decomposed into these other orthognal basis
functions using correlation, just as done here with sinusoids.  This is not to
suggest that this is useful, only that it is possible.

As previously shown in Table 8-1, the Inverse DFT has two ways to be
implemented in a computer program.  This difference involves swapping the
inner and outer loops during the synthesis.   While this does not change the
output of the program, it makes a difference in how you view what is being
done.  The DFT program in Table 8-2 can also be changed in this fashion, by
swapping the inner and outer loops in lines 310 to 380.  Just as before, the
output of the program is the same, but the way you think about the calculation
is different.  (These two different ways of viewing the DFT and inverse DFT
could be described as "input side" and "output side" algorithms, just as for
convolution). 

As the program in Table 8-2 is written, it describes how an individual sample
in the frequency domain is affected by all of the samples in the time domain.
That is, the program calculates each of the values in the frequency domain in
succession, not as a group.   When the inner and outer loops are exchanged,
the program loops through each sample in the time domain, calculating the
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contribution of that point to the frequency domain.  The overall frequency
domain is found by adding the contributions from the individual time
domain points.  This brings up our next question: what kind of contribution
does an individual sample in the time domain provide to the frequency
domain?  The answer is contained in an interesting aspect of Fourier
analysis called duality.

Duality

The synthesis and analysis equations (Eqs. 8-2 and 8-4) are strikingly
similar.  To move from one domain to the other, the known values are
multiplied by the basis functions, and the resulting products added.  The
fact that the DFT and the Inverse DFT use this same mathematical
approach is really quite remarkable, considering the totally different way
we arrived at the two procedures.   In fact, the only significant difference
between the two equations is a result of the time domain being one signal
of N points, while the frequency domain is two signals of  points.N/2% 1
As discussed in later chapters, the complex DFT expresses both the time
and the frequency domains as complex signals of N points each.  This
makes the two domains completely symmetrical, and the equations for
moving between them virtually identical.

This symmetry between the time and frequency domains is called duality,
and gives rise to many interesting properties.  For example, a single point
in the frequency domain corresponds to a sinusoid in the time domain.  By
duality, the inverse is also true, a single point in the time domain
corresponds to a sinusoid in the frequency domain.  As another example,
convolution in the time domain corresponds to multiplication in the
frequency domain.  By duality, the reverse is also true: convolution in the
frequency domain corresponds to multiplication in the time domain.  These
and other duality relationships are discussed in more detail in Chapters 10
and 11.

Polar Notation

As it has been described so far, the frequency domain is a group of
amplitudes of cosine and sine waves (with slight scaling modifications).
This is called rectangular notation.  Alternatively, the frequency domain
can be expressed in polar form.  In this notation,  &  areReX[ ] Im X [ ]
replaced with two other arrays, called the Magnitude of , written inX [ ]
equations as: , and the Phase of , written as: .Mag X [ ] X [ ] Phase X [ ]
The magnitude and phase are a pair-for-pair replacement for the real and
imaginary parts. For example,  and  are calculatedMag X [0] Phase X [0]
using only  and .   Likewise,   and  areReX[0] Im X [0] Mag X [14] Phase X [14]
calculated using only  and , and so forth.  To understandReX[14] Im X [14]
the conversion, consider what happens when you add a cosine wave and a
sine wave of the same frequency.  The result is a cosine wave of the same
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EQUATION 8-5
The addition of a cosine and sine wave
results in a cosine wave with a different
amplitude and phase shift. The infor-
mation contained in A & B is transferred to
two other variables, M and 2. 

A cos(x) % B sin(x) ' M cos( x % 2)

FIGURE 8-9
Rectangular-to-polar conversion.  The
addition of a cosine wave and a sine
wave (of the same frequency) follows
the same mathematics as the addition of
simple vectors.

B

A

M

2

M = (A  + B  )

2  = arctan(B/A)

2 2 1/2

EQUATION 8-6
Rectangular-to-polar conversion.  The
rectangular representation of the freq-
uency domain,  and , isReX[k] Im X [k]
changed into the polar form, Mag X [k]
and .Phase X [k]

MagX [k ] ' ( ReX [k ]2 % ImX [k ]2 )1/2

PhaseX [k] ' arctan
ImX [k ]
ReX [k ]

EQUATION 8-7
Polar-to-rectangular conversion.  The
two arrays,  and , areMag X [k] Phase X [k]
converted into  and .ReX[k] Im X [k]

ReX [k ] ' MagX [k ] cos( PhaseX [k] )

ImX [k ] ' MagX [k ] sin( PhaseX [k] )

frequency, but with a new amplitude and a new phase shift.  In equation form,
the two representations are related:

The important point is that no information is lost in this process; given one
representation you can calculate the other.  In other words, the information
contained in the amplitudes A and B, is also contained in the variables M and
2.  Although this equation involves sine and cosine waves, it follows the same
conversion equations as do simple vectors.  Figure 8-9 shows the analogous
vector representation of how the two variables, A and B, can be viewed in a
rectangular coordinate system, while M and 2 are parameters in polar
coordinates.

In polar notation,  holds the amplitude of the cosine wave (M in Eq.Mag X [ ]
8-4 and Fig. 8-9), while  holds the phase angle of the cosine wavePhase X [ ]
(2 in Eq. 8-4 and Fig. 8-9).  The following equations  convert the frequency
domain from rectangular to polar notation, and vice versa:
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FIGURE 8-10
Example of rectangular and polar frequency domains.  This example shows a frequency domain expressed
in both rectangular and polar notation.  As in this case, polar notation usually provides human observers with
a better understanding of the characteristics of the signal.  In comparison, the rectangular form is almost
always used when math computations are required.  Pay special notice to the fact that the first and last
samples in the phase must be zero, just as they are in the  imaginary part.  
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Rectangular and polar notation allow you to think of the DFT in two different
ways.  With rectangular notation, the DFT decomposes an N point signal into N/2% 1
cosine waves and  sine waves, each with a specified amplitude.  InN/2% 1
polar notation, the DFT decomposes an N point signal into  cosineN/2% 1
waves, each with a specified amplitude (called the magnitude) and phase shift.
Why does polar notation use cosine waves instead of sine waves?  Sine waves
cannot represent the DC component of a signal, since a sine wave of zero
frequency is composed of all zeros (see Figs. 8-5 a&b).

Even though the polar and rectangular representations contain exactly the same
information, there are many instances where one is easier to use that the other.
For example, Fig. 8-10 shows a frequency domain signal in both rectangular
and polar form.  Warning: Don't try to understand the shape of the real and
imaginary parts; your head will explode!  In comparison, the polar curves are
straightforward: only frequencies below about 0.25 are present, and the phase
shift is approximately proportional to the frequency.  This is the frequency
response of a low-pass filter.
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When should you use rectangular notation and when should you use polar?
Rectangular notation is usually the best choice for calculations, such as in
equations and computer programs.  In comparison, graphs are almost always
in polar form.  As shown by the previous example, it is nearly impossible for
humans to understand the characteristics of a frequency domain signal by
looking at the real and imaginary parts.  In a typical program, the frequency
domain signals are kept in rectangular notation until an observer needs to look
at them, at which time a rectangular-to-polar conversion is done.

Why is it easier to understand the frequency domain in polar notation?  This
question goes to the heart of why decomposing a signal into sinusoids is useful.
Recall the property of sinusoidal fidelity from Chapter 5: if a sinusoid enters
a linear system, the output will also be a sinusoid, and at exactly the same
frequency as the input.  Only the amplitude and phase can change.  Polar
notation directly represents signals in terms of the amplitude and phase of the
component cosine waves.  In turn, systems can be represented by how they
modify the amplitude and phase of each of these cosine waves.
  
Now consider what happens if rectangular notation is used with this
scenario.  A mixture of cosine and sine waves enter the linear system,
resulting in a mixture of cosine and sine waves leaving the system.  The
problem is, a cosine wave on the input may result in both cosine and sine
waves on the output.  Likewise, a sine wave on the input can result in both
cosine and sine waves on the output.  While these cross-terms can be
straightened out, the overall method doesn't match with why we wanted to
use sinusoids in the first place. 

Polar Nuisances

There are many nuisances associated with using polar notation.  None of these
are overwhelming, just really annoying!  Table 8-3 shows a computer program
for converting between rectangular and polar notation, and provides solutions
for some of these pests.

Nuisance 1:  Radians vs. Degrees
It is possible to express the phase in either degrees or radians.  When
expressed in degrees, the values in the phase signal are between -180 and 180.
Using radians, each of the values will be between -B and B, that is,  between
-3.141592 to 3.141592.  Most computer languages require the use radians for
their trigonometric functions, such as cosine, sine, arctangent, etc.  It can be
irritating to work with these long decimal numbers, and difficult to interpret the
data you receive.  For example, if you want to introduce a 90 degree phase
shift into a signal, you need to add 1.570796 to the phase.  While it isn't going
to kill you to type this into your program, it does become tiresome.  The best
way to handle this problem is to define the constant, PI = 3.141592,  at the
beginning of your program.  A 90 degree phase shift can then be written as

.  Degrees and radians are both widely used in DSP and you need toPI /2
become comfortable with both.
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100 'RECTANGULAR-TO-POLAR & POLAR-TO-RECTANGULAR CONVERSION
110 '
120 DIM REX[256] 'REX[ ]   holds the real part
130 DIM IMX[256] 'IMX[ ]   holds the imaginary part
140 DIM MAG[256] 'MAG[ ]  holds the magnitude
150 DIM PHASE[256] 'PHASE[ ] holds the phase
160 '
170 PI = 3.14159265
180 '
190 GOSUB XXXX   'Mythical subroutine to load data into REX[ ] and IMX[ ]
200 '
210 '
220 ' 'Rectangular-to-polar conversion, Eq. 8-6
230 FOR K% = 0 TO 256
240   MAG[K%] = SQR( REX[K%]^2 + IMX[K%]^2 ) 'from Eq. 8-6
250   IF REX[K%] = 0 THEN REX[K%] = 1E-20 'prevent divide by 0 (nuisance 2)
260   PHASE[K%] = ATN( IMX[K%] / REX[K%] ) 'from Eq. 8-6
270   ' 'correct the arctan (nuisance 3)
280   IF REX[K%] < 0 AND IMX[K%] <   0 THEN PHASE[K%] = PHASE[K%]  - PI
290   IF REX[K%] < 0 AND IMX[K%] >= 0 THEN PHASE[K%] = PHASE[K%] + PI
300 NEXT K%
310 '
320 '
330 ' 'Polar-to-rectangular conversion, Eq. 8-7
340 FOR K% = 0 TO 256
350   REX[K%] = MAG[K%] * COS( PHASE[K%] )
360   IMX[K%] = MAG[K%] *  SIN( PHASE[K%] )
370 NEXT K%
380 ' 
390 END

      TABLE 8-3 

Nuisance 2:  Divide by zero error
When converting from rectangular to polar notation, it is very common to
find frequencies where the real part is zero and the imaginary part is some
nonzero value.  This simply means that the phase is exactly 90 or -90
degrees.  Try to tell your computer this!  When your program tries to
calculate the phase from: , a divide byPhase X [k] ' arctan( Im X [k] / Re X [k])
zero error occurs.  Even if the program execution doesn't halt, the phase
you obtain for this frequency won't be correct.   To avoid this problem,  the
real part must be tested for being zero before the division.  If it is zero, the
imaginary part must be tested for being positive or negative, to determine
whether to set the phase to B/2 or -B/2, respectively.  Lastly, the division
needs to be bypassed.  Nothing difficult in all these steps, just the potential
for aggravation.   An alternative way to handle this problem is shown in
line 250 of Table 8-3.  If the real part is zero, change it to a negligibly
small number to keep the math processor happy during the division.

Nuisance 3:  Incorrect arctan
Consider a frequency domain sample where  and .ReX[k] ' 1 Im X [k] ' 1
Equation 8-6 provides the corresponding polar values of  andMag X[k] ' 1.414

.  Now consider another sample where  andPhase X [k] ' 45E ReX[k] ' &1
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FIGURE 8-11
The phase of small magnitude signals.  At frequencies where the magnitude drops to a very low value, round-off
noise can cause wild excursions of the phase.  Don't make the mistake of thinking this is a meaningful signal.
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.   Again, Eq. 8-6 provides the values of   andIm X [k] ' &1 Mag X [k] ' 1.414
.  The problem is, the phase is wrong!  It should be .Phase X [k] ' 45E &135E

This error occurs whenever the real part is negative.  This problem can be
corrected by testing the real and imaginary parts after the phase has been
calculated.   If both the real and imaginary parts are negative, subtract 180E
(or B radians) from the calculated phase.  If the real part is negative and the
imaginary part is positive, add  (or B radians).  Lines 340 and 350 of the180E
program in Table 8-3 show how this is done.   If you fail to catch this problem,
the calculated value of the phase will only run between -B/2 and B/2, rather
than between -B and B.   Drill this into your mind.  If you see the phase only
extending to ±1.5708, you have forgotten to correct the ambiguity in the
arctangent calculation.

Nuisance 4:  Phase of very small magnitudes
Imagine the following scenario.  You are grinding away at some DSP task, and
suddenly notice that part of the phase doesn't look right.  It might be noisy,
jumping all over, or just plain wrong.  After spending the next hour looking
through hundreds of lines of computer code, you find the answer.  The
corresponding values in the magnitude are so small that they are buried in
round-off noise.   If the magnitude is negligibly small, the phase doesn't have
any meaning, and can assume unusual values.  An example of this is shown in
Fig. 8-11.  It is usually obvious when an amplitude signal is lost in noise; the
values are so small that you are forced to suspect that the values are
meaningless.  The phase is different.  When a polar signal is  contaminated
with noise, the values in the phase are random numbers between -B and B.
Unfortunately, this often looks like a real signal, rather than the nonsense it
really is.

Nuisance 5:   2BB ambiguity of the phase
Look again at Fig. 8-10d, and notice the several discontinuities in the data.
Every time a point looks as if it is going to dip below -3.14592,  it snaps
back to 3.141592.  This is a result of the periodic nature of sinusoids.  For
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FIGURE 8-12
Example of phase unwrapping. The top curve
shows a typical phase signal obtained from a
rectangular-to-polar conversion routine.  Each
value in the signal must be between -B and B
(i.e., -3.14159 and 3.14159).  As shown in the
lower curve, the phase can be unwrapped by
adding or subtracting integer multiplies of 2B
from each sample, where the integer is chosen
to minimize the discontinuities between points.
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100 ' PHASE UNWRAPPING 
110 '
120 DIM PHASE[256] 'PHASE[ ]   holds the original phase
130 DIM UWPHASE[256] 'UWPHASE[ ] holds the unwrapped phase
140 '
150 PI = 3.14159265
160 '
170 GOSUB XXXX         'Mythical subroutine to load data into PHASE[ ]
180 '
190 UWPHASE[0] = 0 'The first point of all phase signals is zero
200 '
210 ' 'Go through the unwrapping algorithm
220 FOR K% = 1 TO 256
230   C% = CINT( (UWPHASE[K%-1] - PHASE[K%]) / (2 * PI) )
240   UWPHASE[K%] = PHASE[K%] + C%*2*PI
250 NEXT K%
260 '
270 END

           TABLE 8-4

example, a phase shift of  is exactly the same as a phase shift of   θ θ π+ 2 , θ π+ 4 ,
 etc.  Any sinusoid is unchanged when you add an integer multiple ofθ π+ 6 ,

2B to the phase.  The apparent discontinuities in the signal are a result of the
computer algorithm picking its favorite choice from an infinite number of
equivalent possibilities.  The smallest possible value is always chosen, keeping
the phase between -B and B.  

It is often easier to understand the phase if it does not have these
discontinuities, even if it means that the phase extends above B, or below -B.
This is called unwrapping the phase, and an example is shown in Fig. 8-12.
As shown by the program in Table 8-4, a multiple of 2B is added or subtracted
from each value of the phase.  The exact value is determined by an algorithm
that minimizes the difference between adjacent samples.

Nuisance 6:   The magnitude is always positive (BB ambiguity of the phase)
Figure 8-13 shows a frequency domain signal in rectangular and polar form.
The real part is smooth and quite easy to understand, while the  imaginary
part is entirely zero.  In comparison, the polar signals contain abrupt
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FIGURE 8-13
Example signals in rectangular and polar form.  Since the magnitude must always be positive (by definition),
the magnitude and phase may contain abrupt discontinuities and sharp corners.  Figure (d) also shows
another nuisance: random noise can cause the phase to rapidly oscillate between B or -B.
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discontinuities and sharp corners.   This is because the magnitude must always
be positive, by definition.  Whenever the real part dips below zero, the
magnitude remains positive by changing the phase by B (or -B, which is the
same thing).  While this is not a problem for the mathematics, the irregular
curves can be difficult to interpret.  

One solution is to allow the magnitude to have negative values.  In the example
of Fig. 8-13, this would make the magnitude appear the same as the real part,
while the phase would be entirely zero.  There is nothing wrong with this if it
helps your understanding.   Just be careful not to call  a signal with negative
values the "magnitude" since this violates its formal definition.  In this book we
use the weasel words: unwrapped magnitude to indicate a "magnitude" that is
allowed to have negative values. 

Nuisance 7:   Spikes between BB and -BB 
Since B and -B represent the same phase shift, round-off noise can cause
adjacent points in the phase to rapidly switch between the two values.  As
shown in Fig. 8-13d, this can produce sharp breaks and spikes in an otherwise
smooth curve. Don't be fooled, the phase isn't really this discontinuous.


