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CHAPTER

6
Convolution     

Convolution is a mathematical way of combining two signals to form a third signal.  It is the
single most important technique in Digital Signal Processing.  Using the strategy of impulse
decomposition, systems are described by a signal called the impulse response.  Convolution is
important because it relates the three signals of interest: the input signal, the output signal, and
the impulse response.  This chapter presents convolution from two different viewpoints, called
the input side algorithm and the output side algorithm.  Convolution provides the mathematical
framework for DSP; there is nothing more important in this book.  

The Delta Function and Impulse Response

The previous chapter describes how a signal can be decomposed into a group
of components called impulses.  An impulse is a signal composed of all zeros,
except a single nonzero point.  In effect, impulse decomposition provides a way
to analyze signals one sample at a time.  The previous chapter also presented
the fundamental concept of DSP:  the input signal is decomposed into simple
additive components, each of these components is passed through a linear
system, and the resulting output components are synthesized (added).  The
signal resulting from this divide-and-conquer procedure is identical to that
obtained by directly passing the original signal through the system.  While
many different decompositions are possible, two form the backbone of signal
processing: impulse decomposition and Fourier decomposition.  When impulse
decomposition is used, the procedure can be described by a mathematical
operation called convolution.  In this chapter (and most of the following ones)
we will only be dealing with discrete signals.  Convolution also applies to
continuous signals, but the mathematics is more complicated. We will look at
how continious signals are processed in Chapter 13. 

Figure 6-1 defines two important terms used in DSP.  The first is the delta
function, symbolized by the Greek letter delta, .  The delta function is**[n]
a normalized impulse, that is, sample number zero has a value of one, while
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all other samples have a value of zero.  For this reason, the delta function is
frequently called the unit impulse.  

The second term defined in Fig. 6-1 is the impulse response.  As the name
suggests, the impulse response is the signal that exits a system when a delta
function (unit impulse) is the input.  If two systems are different in any way,
they will have different impulse responses.  Just as the input and output signals
are often called  and , the impulse response is usually given thex[n] y[n]
symbol, .  Of course, this can be changed if a more descriptive name ish[n]
available, for instance,  might be used to identify the impulse response off [n]
a filter.

Any impulse can be represented as a shifted and scaled delta function.
Consider a signal, , composed of all zeros except sample number 8,a[n]
which has a value of -3.  This is the same as a delta function shifted to the
r igh t  by  8  samples ,  and  mul t ip l ied  by  -3 .   In  equa t ion  form:

.  Make sure you understand this notation, it is used ina[n] ' &3*[n&8]
nearly all DSP equations. 

If the input to a system is an impulse, such as , what is the system's&3*[n&8]
output?  This is where the properties of homogeneity and shift invariance are
used.  Scaling and shifting the input results in an identical scaling and shifting
of the output.  If  results in , it follows that  results in*[n] h[n] &3*[n&8]

.  In words, the output is a version of the impulse response that has&3h[n&8]
been shifted and scaled by the same amount as the delta function on the input.
If you know a system's impulse response,  you immediately know how it will
react to any impulse.

Convolution

Let's summarize this way of understanding how a system changes an input
signal into an output signal.  First, the input signal can be decomposed into a
set of impulses, each of which can be viewed as a scaled and shifted delta
function.  Second, the output resulting from each impulse is a scaled and shifted
version of the impulse response.  Third, the overall output signal can be found
by adding these scaled and shifted impulse responses.  In other words, if we
know a system's impulse response, then we can calculate what the output will
be for any possible input signal.  This means we know everything about the
system.  There is nothing more that can be learned about a linear system's
characteristics.  (However, in later chapters we will show that this information
can be represented in different forms). 

The impulse response goes by a different name in some applications.   If the
system being considered is a filter, the impulse response is called the filter
kernel, the convolution kernel, or simply, the kernel.  In image processing,
the impulse response is called the point spread function.  While these terms
are used in slightly different ways, they all mean the same thing, the signal
produced by a system when the input is a delta function.
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FIGURE 6-1
Definition of delta function and impulse response. The delta function is a normalized impulse.  All of
its samples have a value of zero, except for sample number zero, which has a value of one.  The Greek
letter delta, , is used to identify the delta function.  The impulse response of a linear system, usually*[n]
denoted by , is the output of the system when the input is a delta function.h[n]

x[n]    h[n] = y[n]

x[n] y[n]
Linear
System

h[n]

FIGURE 6-2
How convolution is used in DSP.  The
output signal from a linear system is
equal to the input signal convolved
with the system's impulse response.
Convolution is denoted by a star when
writing equations. 

Convolution is a formal mathematical operation, just as multiplication,
addition, and integration.  Addition takes two numbers and produces a third
number, while convolution takes two signals and produces a third signal.
Convolution is used in the mathematics of many fields, such as probability and
statistics.  In linear systems, convolution is used to describe the relationship
between three signals of interest: the input signal, the impulse response, and the
output signal.

Figure 6-2 shows the notation when convolution is used with linear systems.
An input signal, , enters a linear system with an impulse response, ,x[n] h[n]
resulting in an output signal, .  In equation form: .y[n] x[n] t h[n] ' y[n]
Expressed in words,  the input signal convolved with the impulse response is
equal to the output signal.  Just as addition is represented by the plus, +, and
multiplication by the cross, ×, convolution is represented by the star, t.  It is
unfortunate that most programming languages also use the star to indicate
multiplication.  A star in a computer program means multiplication, while a star
in an equation means convolution. 
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FIGURE 6-3
Examples of low-pass and high-pass filtering using convolution.  In this example, the input signal
is a few cycles of a sine wave plus a slowly rising ramp. These two components are separated by
using properly selected impulse responses.

Figure 6-3 shows convolution being used for low-pass and high-pass filtering.
The example input signal is the sum of two components:  three cycles of a sine
wave (representing a high frequency), plus a slowly rising ramp (composed of
low frequencies).  In (a), the impulse response for the low-pass filter is a
smooth arch, resulting in only the slowly changing ramp waveform being
passed to the output.  Similarly, the high-pass filter, (b),  allows only the more
rapidly changing sinusoid to pass. 

Figure 6-4 illustrates two additional examples of how convolution is used to
process signals. The inverting attenuator, (a), flips the signal top-for-bottom,
and reduces its amplitude.  The discrete derivative (also called the first
difference), shown in (b), results in an output signal related to the slope of the
input signal.

Notice the lengths of the signals in Figs. 6-3 and 6-4.  The input signals are
81 samples long, while each impulse response is composed of  31 samples.
In most DSP applications, the input signal is hundreds, thousands, or even
millions of samples in length.  The impulse response is usually much shorter,
say, a few points to a few hundred points.  The mathematics behind
convolution doesn't restrict how long these signals are.  It does, however,
specify the length of the output signal.  The length of the output signal is
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FIGURE 6-4
Examples of signals being processed using convolution.  Many signal processing tasks use very
simple impulse responses.  As shown in these examples, dramatic changes can be achieved with only
a few nonzero points. 

equal to the length of the input signal, plus the length of the impulse
response, minus one.  For the signals in Figs. 6-3 and 6-4, each output
signal is:  samples long.  The input signal runs from sample81% 31& 1 ' 111
0 to 80, the impulse response from sample 0 to 30, and the output signal
from sample 0 to 110. 

Now we come to the detailed mathematics of convolution.  As used in Digital
Signal Processing, convolution can be understood in two separate ways.  The
first looks at convolution from the viewpoint of the input signal.  This
involves analyzing how each sample in the input signal contributes to many
points in the output signal.  The second way looks at convolution from the
viewpoint of the output signal.  This examines how each sample in the
output signal has received information from many points in the input signal.

Keep in mind that these two perspectives are different ways of thinking
about the same mathematical operation.   The first viewpoint is important
because it provides a conceptual understanding of how convolution pertains
to DSP.  The second viewpoint describes the mathematics of convolution.
This typifies one of the most difficult tasks you will encounter in DSP:
making your conceptual understanding fit with the jumble of mathematics
used to communicate the ideas.
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FIGURE 6-5
Example convolution problem.   A nine point input signal, convolved with a four point impulse response, results
in a twelve point output signal.  Each point in the input signal contributes a scaled and shifted impulse response
to the output signal.  These nine scaled and shifted impulse responses are shown in Fig. 6-6.

Now examine sample , the last point in the input signal.  This sample is atx[8]
index number eight, and has a value of -0.5.  As shown in the lower-right graph
of Fig. 6-6, results in an impulse response that has been shifted to the rightx[8]
by eight points and multiplied by -0.5.  Place holding zeros have been added at
points 0-7.  Lastly, examine the effect of points  and .  Both thesex[0] x[7]
samples have a value of zero, and therefore produce output components
consisting of all zeros.

The Input Side Algorithm

Figure 6-5 shows a simple convolution problem: a 9 point input signal, ,x[n]
is passed through a system with a 4 point impulse response, , resultingh[n]
in a  point output signal, .  In mathematical terms,  is9% 4& 1 ' 12 y[n] x[n]
convolved with  to produce .  This first viewpoint of convolution ish[n] y[n]
based on the fundamental concept of DSP: decompose the input, pass the
components through the system, and synthesize the output.  In this example,
each of the nine samples in the input signal will contribute a scaled and
shifted version of the impulse response to the output signal.  These nine
signals are shown in Fig. 6-6.  Adding these nine signals produces the
output signal, .y[n]

Let's look at several of these nine signals in detail.  We will start with sample
number four in the input signal, i.e., .  This sample is at index number four,x[4]
and has a value of 1.4.  When the signal is decomposed, this turns into an
impulse represented as: .  After passing through the system, the1.4*[n&4]
resulting output component will be: .  This signal is shown in the1.4 h[n&4]
center box of the nine signals in Fig. 6-6.  Notice that this is the impulse
response, , multiplied by 1.4, and shifted four samples to the right.  Zerosh[n]
have been added at samples 0-3 and at samples 8-11 to serve as place holders.
To make this more clear, Fig. 6-6 uses squares to represent the data points that
come from the shifted and scaled impulse response, and diamonds for the added
zeros.
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FIGURE 6-6
Output signal components for the convolution in Fig. 6-5.  In these signals, each point that results from a scaled
and shifted impulse response is represented by a square marker.  The remaining data points, represented by
diamonds, are zeros that have been added as place holders. 
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In this example,  is a nine point signal and  is a four point signal.  Inx[n] h[n]
our next example, shown in Fig. 6-7, we will reverse the situation by making x[n]
a four point signal, and  a nine point signal.  The same two waveforms areh[n]
used, they are just swapped.  As shown by the output signal components, the
four samples in  result in four shifted and scaled versions of the nine pointx[n]
impulse response.  Just as before, leading and trailing zeros are added as place
holders.

But wait just one moment!  The output signal in Fig. 6-7 is identical to the
output signal in Fig. 6-5.  This isn't a mistake, but an important property.
Convolution is commutative: .  The mathematics doesa[n]tb[n] ' b[n]ta[n]
not care which is the input signal and which is the impulse response, only
that two signals are convolved with each other.  Although the mathematics
may allow it, exchanging the two signals has no physical meaning in system
theory.  The input signal and impulse response are two totally different
things and exchanging them doesn't make sense.  What the commutative
property provides is a mathematical tool for manipulating equations to
achieve various results.
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TABLE 6-1

100  'CONVOLUTION USING THE INPUT SIDE ALGORITHM
110                            '
120 DIM X[80]             'The input signal, 81 points
130 DIM H[30]             'The impulse response, 31 points
140 DIM Y[110]           'The output signal, 111 points
150                            '
160 GOSUB XXXX  'Mythical subroutine to load X[ ] and H[ ] 
170                            '
180 FOR I% = 0 TO 110 'Zero the output array
190   Y(I%) = 0
200 NEXT I%
210                            '
220 FOR I% = 0 TO 80 'Loop for each point in X[ ]
230   FOR J% = 0 TO 30 'Loop for each point in H[ ]
240     Y[I%+J%] = Y[I%+J%] + X[I%]tH[J%]
250   NEXT J%
260 NEXT I% '(remember, t is multiplication in programs!)
270                             '
280 GOSUB XXXX    'Mythical subroutine to store Y[ ]
290                 '
300 END

A program for calculating convolutions using the input side algorithm is shown
in Table 6-1.  Remember, the programs in this book are meant to convey
algorithms in the simplest form, even at the expense of good programming
style.  For instance, all of the input and output is handled in mythical
subroutines (lines 160 and 280), meaning we do not define how these
operations are conducted.   Do not skip over these programs; they are a key
part of the material and you need to understand them in detail.  

The program convolves an 81 point input signal, held in array X[ ],  with a 31
point impulse response, held in array H[ ], resulting in a 111 point output
signal, held in array Y[ ].  These are the same lengths shown in Figs. 6-3 and
6-4.  Notice that the names of these arrays use upper case letters.  This is a
violation of the naming conventions previously discussed, because upper case
letters are reserved for frequency domain signals.  Unfortunately, the simple
BASIC used in this book does not allow lower case variable names.  Also
notice that line 240 uses a star for multiplication.  Remember, a star in a
program means multiplication, while a star in an equation means convolution.
A star in text (such as documentation or program comments) can mean either.

The mythical subroutine in line 160 places the input signal into X[ ] and the
impulse response into H[ ].  Lines 180-200 set all of the values in Y[ ] to
zero.  This is necessary because Y[ ] is used as an accumulator to sum the
output components as they are calculated.  Lines 220 to 260 are the heart of
the program.  The FOR statement in line 220 controls a loop that steps through
each point in the input signal, X[ ].  For each sample in the input signal, an
inner loop (lines 230-250) calculates a scaled and shifted version of the
impulse response, and adds it to the array accumulating the output signal,
Y[ ].  This nested loop structure (one loop within another loop) is a key
characteristic of convolution programs; become familiar with it.
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FIGURE 6-7
A second example of convolution.  The waveforms for the input signal and impulse response
are exchanged from the example of Fig. 6-5.  Since convolution is commutative, the output
signals for the two examples are identical. 
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Output signal components

Keeping the indexing straight in line 240 can drive you crazy!  Let's say we
are halfway through the execution of this program, so that we have just
begun action on sample X[40], i.e., I% = 40.  The inner loop runs through
each point in the impulse response doing three things.  First, the impulse
response is scaled by multiplying it by the value of the input sample.  If this
were the only action taken by the inner loop, line 240 could be written,
Y[J%] = X[40]tH[J%].  Second, the scaled impulse is shifted 40 samples
to the right by adding this number to the index used in the output signal.
This second action would change line 240 to: Y[40+J%] = X[40]tH[J%].
Third, Y[ ] must accumulate (synthesize) all the signals resulting from each
sample in the input signal.  Therefore, the new information must be added
to the information that is already in the array.  This results in the final
command: Y[40+J%] = Y[40+J%] + X[40]tH[J%].  Study this carefully;
it is very confusing, but very important.
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The Output Side Algorithm

The first viewpoint of convolution analyzes how each sample in the input
signal affects many samples in the output signal.  In this second viewpoint,
we reverse this by looking at individual samples in the output signal, and
finding the contributing points from the input.  This is important from both
mathematical and practical standpoints.  Suppose that we are given some
input signal and impulse response, and want to find the convolution of the
two.  The most straightforward method would be to write a program that
loops through the output signal, calculating one sample on each loop cycle.
Likewise, equations are written in the form: some combination ofy[n] '
other variables.  That is, sample n in the output signal is equal to some
combination of the many values in the input signal and impulse response.
This requires a knowledge of how each sample in the output signal can be
calculated independently of all other samples in the output signal.  The
output side algorithm provides this information. 

Let's look at an example of how a single point in the output signal is influenced
by several points from the input.  The example point we will use is  in Fig.y[6]
6-5.  This point is equal to the sum of all the sixth points in the nine output
components, shown in Fig. 6-6.  Now, look closely at these nine output
components and identify which can affect .  That is, find which of thesey[6]
nine signals contains a nonzero sample at the sixth position.  Five of the output
components only have added zeros (the diamond markers) at the sixth sample,
and can therefore be ignored.  Only four of the output components are capable
of having a nonzero value in the sixth position.  These are the output
components generated from the input samples: .  Byx[3], x[4], x[5], and x[6]
adding the sixth sample from each of these output components,  isy[6]
determined as: .  That is, foury[6] ' x[3]h[3] % x[4]h[2] % x[5]h[1] % x[6]h[0]
samples from the input signal are multiplied by the four samples in the impulse
response, and the products added. 

Figure 6-8 illustrates the output side algorithm as a convolution machine, a
flow diagram of how convolution occurs.  Think of the input signal, , andx[n]
the output signal, , as fixed on the page.  The convolution machine,y[n]
everything inside the dashed box, is free to move left and right as needed.  The
convolution machine is positioned so that its output is aligned with the output
sample being calculated.  Four samples from the input signal fall into the inputs
of the convolution machine.  These values are multiplied by the indicated
samples in the impulse response, and the products are added.  This produces the
value for the output signal, which drops into its proper place.  For example,

 i s  s h o w n  b e i n g  c a l c u l a t e d  f r o m  t h e  f o u r  i n p u t  s a m p l e s :y[6]
.x[3], x[4], x[5], and x[6]

To calculate , the convolution machine moves one sample to the right.  Thisy[7]
results in another four samples entering the machine,  through , and thex[4] x[7]
value for  dropping into the proper place.   This process is repeated for ally[7]
points in the output signal needing to be calculated.
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FIGURE 6-8
The convolution machine.  This is a flow diagram showing how each sample in the output signal
is influenced by the input signal and impulse response.  See the text for details. 
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The arrangement of the impulse response inside the convolution machine is
very important.  The impulse response is flipped left-for-right.  This places
sample number zero on the right, and increasingly positive sample numbers
running to the left.  Compare this to the normal impulse response in Fig. 6-5
to understand the geometry of this flip.   Why is this flip needed?  It simply
falls out of the mathematics.  The impulse response describes how each point
in the input signal affects the output signal.  This results in each point in the
output signal being affected by points in the input signal weighted by a flipped
impulse response.
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FIGURE 6-9
The convolution machine in action.  Figures (a) through (d) show the convolution machine
set to calculate four different output signal samples, y[0], y[3], y[8], and y[11].
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a. Set to calculate y[0]
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Figure 6-9 shows the convolution machine being used to calculate several
samples in the output signal.  This diagram also illustrates a real nuisance in
convolution.  In (a), the convolution machine is located fully to the left with its
output aimed at .  In this position, it is trying to receive input fromy[0]
samples: .  The problem is, three of these samples:x[&3], x[&2], x[&1], and x[0]

, do not exist!  This same dilemma arises in (d), wherex[&3], x[&2], and x[&1]
the convolution machine tries to accept samples to the right of the defined input
signal, points . x[9], x[10], and x[11]

One way to handle this problem is by inventing the nonexistent samples.  This
involves adding samples to the ends of the input signal, with each of the added
samples having a value of zero.   This is called padding the signal with zeros.
Instead of trying to access a nonexistent value, the convolution machine
receives a sample that has a value of zero.  Since this zero is  eliminated
during the multiplication, the result is mathematically the same as ignoring the
nonexistent inputs.
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       Figure 6-9 (continued)

The important part is that the far left and far right samples in the output signal
are based on incomplete information.  In DSP jargon, the impulse response
is not fully immersed in the input signal.   If the impulse response is M
points in length, the first and last  samples in the output signal are basedM&1
on less information than the samples between.  This is analogous to an
electronic circuit requiring a certain amount of time to stabilize after the power
is applied.  The difference is that this transient is easy to ignore in electronics,
but very prominent in DSP.   

Figure 6-10 shows an example of the trouble these end effects can cause.  The
input signal is a sine wave plus a DC component.  The desire is to remove the
DC part of the signal, while leaving the sine wave intact.  This calls for a high-
pass filter, such as the impulse response shown in the figure.  The problem is,
the first and last 30 points are a mess!  The shape of these end regions can be
understood by imagining the input signal padded with 30 zeros on the left side,
samples   through , and 30 zeros on the right, samples x[&1] x[&30] x[81]
through .  The output signal can then be viewed as a filtered versionx[110]
of this longer waveform.  These "end effect" problems are widespread in
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EQUATION 6-1
The convolution summation. This is the
formal definition of convolution, written in
the shorthand: . In thisy [n] ' x [n] t h [n]
equation,  is an M point signal withh [n]
indexes running from 0 to M-1.

y [i ] ' j
M&1

j'0

h [ j ] x [i& j ]

DSP.  As a general rule, expect that the beginning and ending samples in
processed signals will be quite useless. 

Now the math.  Using the convolution machine as a guideline, we can write the
standard equation for convolution.  If  is an N point signal running from 0x[n]
to N-1, and  is an M point signal running from 0 to M-1,  the convolutionh[n]
of the two: , is an N+M-1 point signal running from 0 toy[n] ' x[n] t h[n]
N+M-2, given by:

This equation is called the convolution sum.  It allows each point in the
output signal to be calculated independently of all other points in the output
signal.   The index, i, determines which sample in the output signal is being
calculated, and therefore corresponds to the left-right position of the
convolution machine.  In computer programs performing convolution, a loop
makes this index run through each sample in the output signal.   To
calculate one of the output samples, the index, j, is used inside of the
convolution machine.  As j runs through 0 to M-1,  each sample in the
impulse response,  is multiplied by the proper sample from the inputh[ j],
signal,   All these products are added to produce the output samplex[ i& j].
being calculated.  Study Eq. 6-1 until you fully understand how it is
implemented by the convolution machine.   Much of DSP is based on this
equation.  (Don't be confused by the n in . This is merelyy[n] ' x[n] t h[n]
a place holder to indicate that some variable is the index into the array.
Sometimes the equations are written: , just to avoid havingy[ ] ' x[ ] t h[ ]
to bring in a meaningless symbol).

Table 6-2 shows a program for performing convolutions using the output side
algorithm, a direct use of Eq. 6-1.  This program produces the same output
signal as the program for the input side algorithm, shown previously in Table
6-1.  Notice the main difference between these two programs: the input side
algorithm loops through each sample in the input signal (line 220 of Table 6-
1), while the output side algorithm loops through each sample in the output
signal (line 180 of Table 6-2). 

Here is a detailed operation of this program. The FOR-NEXT loop in lines 180
to 250 steps through each sample in the output signal, using I% as the index.
For each of these values, an inner loop, composed of lines 200 to 230,
calculates the value of the output sample, Y[I%].   The value of Y[I%] is set
to zero in line 190, allowing it to accumulate the products inside of the
convolution machine.  The FOR-NEXT loop in lines 200 to 240 provide a
direct implementation of Eq. 6-1.  The index, J%, steps through each
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sample in the impulse response.  Line 230 provides the multiplication of each
sample in the impulse response, H[J%], with the appropriate sample from the
input signal, X[I%-J%], and adds the result to the accumulator.

In line 230, the sample taken from the input signal is: X[I%-J%].   Lines 210
and 220 prevent this from being outside the defined array, X[0] to X[80].  In
other words, this program handles undefined samples in the input signal by
ignoring them.  Another alternative would be to define the input signal's array
from X[-30] to X[110], allowing 30 zeros to be padded on each side of the true
data.  As a third alternative, the FOR-NEXT loop in line 180 could be changed
to run from 30 to 80, rather than 0 to 110.  That is, the program would only
calculate the samples in the output signal where the impulse response is fully
immersed in the input signal.  The important thing is that you must use one of
these three techniques.  If you don't, the program will crash when it tries to read
the out-of-bounds data. 
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FIGURE 6-10
End effects in convolution. When an input signal is convolved with an M point impulse response,
the first and last M-1 points in the output signal may not be usable.  In this example, the impulse
response is a high-pass filter used to remove the DC component from the input signal.

100  'CONVOLUTION USING THE OUTPUT SIDE ALGORITHM
110                            '
120 DIM X[80]             'The input signal, 81 points
130 DIM H[30]             'The impulse response, 31 points
140 DIM Y[110]           'The output signal, 111 points
150                            '
160 GOSUB XXXX  'Mythical subroutine to load X[ ] and H[ ] 
170                            '                         
180 FOR I% = 0 TO 110 'Loop for each point in Y[ ]
190   Y[I%] = 0             'Zero the sample in the output array 
200   FOR J% = 0 TO 30 'Loop for each point in H[ ]
210     IF (I%-J% < 0)  THEN GOTO 240
220     IF (I%-J% > 80) THEN GOTO 240
230     Y(I%) = Y(I%) + H(J%) t X(I%-J%)
240   NEXT J%
250 NEXT I%
260                             '
270 GOSUB XXXX    'Mythical subroutine to store Y[ ]
280                 '
290 END

TABLE 6-2
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The Sum of Weighted Inputs

The characteristics of a linear system are completely described by its impulse
response.  This is the basis of the input side algorithm: each point in the input
signal contributes a scaled and shifted version of the impulse response to the
output signal.  The mathematical consequences of this lead to the output side
algorithm: each point in the output signal receives a contribution from many
points in the input signal, multiplied by a flipped impulse response.  While this
is all true, it doesn't provide the full story on why convolution is important in
signal processing.

Look back at the convolution machine in Fig. 6-8, and ignore that the signal
inside the dotted box is an impulse response.  Think of it as a set of weighing
coefficients that happen to be embedded in the flow diagram.  In this view,
each sample in the output signal is equal to a sum of weighted inputs.  Each
sample in the output is influenced by a region of samples in the input signal,
as determined by what the weighing coefficients are chosen to be.  For
example, imagine there are ten weighing coefficients, each with a value of one-
tenth.  This makes each sample in the output signal the average of ten samples
from the input.

Taking this further, the weighing coefficients do not need to be restricted to the
left side of the output sample being calculated.  For instance, Fig. 6-8 shows y[6]
being calculated from: .  Viewing the convolutionx[3], x[4], x[5], and x[6]
machine as a sum of weighted inputs, the weighing coefficients could be chosen
symmetrically around the output sample.  For example,  might receivey[6]
contributions from: .  Using the same indexingx[4], x[5], x[6], x[7], and x[8]
notation as in Fig. 6-8, the weighing coefficients for these five inputs would be
held in:  .   In other words, the impulseh[2], h[1], h[0], h[&1], and h[&2]
response that corresponds to our selection of symmetrical weighing coefficients
requires the use of negative indexes.  We will return to this in the next chapter.

Mathematically, there is only one concept here: convolution as defined by Eq.
6-1.  However, science and engineering problems approach this single concept
from two distinct directions.  Sometimes you will want to think of a system in
terms of what its impulse response looks like.  Other times you will understand
the system as a set of weighing coefficients.  You need to become familiar with
both views, and how to toggle between them.   


