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CHAPTER

24
Linear Image Processing

Linear image processing is based on the same two techniques as conventional DSP: convolution
and Fourier analysis.  Convolution is the more important of these two, since images have their
information encoded in the spatial domain rather than the frequency domain.   Linear filtering can
improve images in many ways: sharpening the edges of objects, reducing random noise, correcting
for unequal illumination, deconvolution to correct for blur and motion, etc.  These procedures are
carried out by convolving the original image with an appropriate filter kernel, producing the
filtered image.  A serious problem with image convolution is the enormous number of calculations
that need to be performed, often resulting in unacceptably long execution times.  This chapter
presents strategies for designing filter kernels for various image processing tasks.  Two important
techniques for reducing the execution time are also described: convolution by separability and
FFT convolution.

Convolution

Image convolution works in the same way as one-dimensional convolution.  For
instance, images can be viewed as a summation of impulses, i.e., scaled and
shifted delta functions.  Likewise, linear systems are characterized by how they
respond to impulses; that is, by their impulse responses.  As you should expect,
the output image from a system is equal to the input image convolved with the
system's impulse response.

The two-dimensional delta function is an image composed of all zeros, except
for a single pixel at: row = 0, column = 0, which has a value of one.  For now,
assume that the row and column indexes can have both positive and negative
values, such that the one is centered in a vast sea of zeros. When the delta
function is passed through a linear system, the single nonzero point will be
changed into some other two-dimensional pattern.  Since the only thing that can
happen to a point is that it spreads out, the impulse response is often called the
point spread function (PSF) in image processing jargon.
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a.  Image at first layer b.  Image at third layer

FIGURE 24-1
The PSF of the eye. The middle layer of the retina changes an impulse, shown in (a), into an impulse
surrounded by a dark area, shown in (b).  This point spread function enhances the edges of objects. 

The human eye provides an excellent example of these concepts.  As described
in the last chapter, the first layer of the retina transforms an image represented
as a pattern of light into an image represented as a pattern of nerve impulses.
The second layer of the retina processes this neural image and passes it to the
third layer, the fibers forming the optic nerve.  Imagine that the image being
projected onto the retina is a very small spot of light in the center of a dark
background.  That is, an impulse is fed into the eye.  Assuming that the system
is linear, the image processing taking place in the retina can be determined by
inspecting the image appearing at the optic nerve.  In other words, we want to
find the point spread function of the processing.  We will revisit the
assumption about linearity of the eye later in this chapter. 

Figure 24-1 outlines this experiment.  Figure (a) illustrates the impulse striking
the retina while (b) shows the image appearing at the optic nerve.  The middle
layer of the eye passes the bright spike, but produces a circular region of
increased darkness.  The eye accomplishes this by a process known as lateral
inhibition.  If a nerve cell in the middle layer is activated, it decreases the
ability of its nearby neighbors to become active.  When a complete image is
viewed by the eye, each point in the image contributes a scaled and shifted
version of this impulse response to the image appearing at the optic nerve.   In
other words, the visual image is convolved with this PSF to produce the neural
image transmitted to the brain.  The obvious question is:  how does convolving
a viewed image with this PSF improve the ability of the eye to understand the
world?
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a. True brightness

b. Perceived brightness

FIGURE 24-2
Mach bands. Image processing in the
retina results in a slowly changing edge,
as in (a), being sharpened, as in (b). This
makes it easier to separate objects in the
image, but produces an optical illusion
called Mach bands.  Near the edge, the
overshoot makes the dark region look
darker, and the light region look lighter.
This produces dark and light bands that
run parallel to the edge. 

Humans and other animals use vision to identify nearby objects, such as
enemies, food, and mates.  This is done by distinguishing one region in the
image from another, based on differences in brightness and color.  In other
words, the first step in recognizing an object is to identify its edges, the
discontinuity that separates an object from its background.  The middle layer
of the retina helps this task by sharpening the edges in the viewed image.   As
an illustration of how this works, Fig. 24-2 shows  an image that slowly
changes from dark to light, producing a blurry and poorly defined edge.  Figure
(a) shows the intensity profile of this image, the pattern of brightness entering
the eye.  Figure (b) shows the brightness profile appearing on the optic nerve,
the image transmitted to the brain.  The processing in the retina makes the edge
between the light and dark areas appear more abrupt, reinforcing that the two
regions are different.

The overshoot in the edge response creates an interesting optical illusion.  Next
to the edge, the dark region appears to be unusually dark, and the light region
appears to be unusually light.  The resulting light and dark strips are called
Mach bands, after Ernst Mach (1838-1916), an Austrian physicist who first
described them.

As with one-dimensional signals, image convolution can be viewed in two
ways: from the input, and from the output.  From the input side, each pixel in
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the input image contributes a scaled and shifted version of the point spread
function to the output image.   As viewed from the output side, each pixel in
the output image is influenced by a group of pixels from the input signal.  For
one-dimensional signals, this region of influence is the impulse response flipped
left-for-right.  For image signals, it is the PSF flipped left-for-right and top-
for-bottom.  Since most of the PSFs used in DSP are symmetrical around the
vertical and horizonal axes, these flips do nothing and can be ignored.  Later
in this chapter we will look at nonsymmetrical PSFs that must have the flips
taken into account. 

Figure 24-3 shows several common PSFs.  In (a), the pillbox has a circular top
and straight sides.  For example, if the lens of a camera is not properly focused,
each point in the image will be projected to a circular spot on the image sensor
(look back at Fig. 23-2 and consider the effect of moving the projection screen
toward or away from the lens).  In other words, the pillbox is the point spread
function of an out-of-focus lens.  

The Gaussian, shown in (b), is the PSF of imaging systems limited by random
imperfections.  For instance, the image from a telescope is blurred by
atmospheric turbulence, causing each point of light to become a Gaussian in the
final image.  Image sensors, such as the CCD and retina, are often limited by
the scattering of light and/or electrons.  The Central Limit Theorem dictates
that a Gaussian blur results from these types of random processes. 

The pillbox and Gaussian are used in image processing the same as the moving
average filter is used with one-dimensional signals.  An image convolved with
these PSFs will appear blurry and have less defined edges, but will be lower
in random noise.  These are called smoothing filters, for their action in the
time domain, or low-pass filters, for how they treat the frequency domain. 
The square PSF, shown in (c), can also be used as a smoothing filter, but it
is not circularly symmetric.  This results in the blurring being different in the
diagonal directions compared to the vertical and horizontal.  This may or may
not be important, depending on the use.

The opposite of a smoothing filter is an edge enhancement or high-pass
filter.  The spectral inversion technique, discussed in Chapter 14, is used to
change between the two.  As illustrated in (d), an edge enhancement filter
kernel is formed by taking the negative of a smoothing filter, and adding a
delta function in the center.  The image processing which occurs in the retina
is an example of this type of filter.

Figure (e) shows the two-dimensional sinc function.  One-dimensional signal
processing uses the windowed-sinc to separate frequency bands.  Since images
do not have their information encoded in the frequency domain, the sinc
function is seldom used as an imaging filter kernel, although it does find use
in some theoretical problems.  The sinc function can be hard to use because its
tails decrease very slowly in amplitude ( ), meaning it must be treated as1/x
infinitely wide.  In comparison, the Gaussian's tails decrease very rapidly
( ) and can eventually be truncated with no ill effect.e &x 2
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c.  Square
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a.  Pillbox
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b.  Gaussian
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d.  Edge enhancement
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e.  Sinc
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FIGURE 24-3
Common point spread functions. The pillbox,
Gaussian, and square, shown in (a), (b), & (c),
are common smoothing (low-pass) filters. Edge
enhancement (high-pass) filters are formed by
subtracting a low-pass kernel from an impulse,
as shown in (d).  The sinc function, (e), is used
very little in image processing because images
have their information encoded in the spatial
domain, not the frequency domain. 
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All these filter kernels use negative indexes in the rows and columns, allowing
the PSF to be centered at row = 0 and column = 0.  Negative indexes are often
eliminated in one-dimensional DSP by shifting the filter kernel to the right until
all the nonzero samples have a positive index.  This shift moves the output
signal by an equal amount, which is usually of no concern.   In comparison, a
shift between the input and output images is generally not acceptable.
Correspondingly, negative indexes are the norm for filter kernels in image
processing.
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A problem with image convolution is that a large number of calculations are
involved.  For instance, when a 512 by 512 pixel image is convolved with a 64
by 64 pixel PSF, more than a billion multiplications and additions are needed
(i.e., ). The long execution times can make the techniques64 ×64 ×512 ×512
impractical.  Three approaches  are used to speed things up.   

The first strategy is to use a very small PSF, often only 3×3 pixels.  This is
carried out by looping through each sample in the output image, using
optimized code to multiply and accumulate the corresponding nine pixels from
the input image.  A surprising amount of processing can be achieved with a
mere 3×3 PSF, because it is large enough to affect the edges in an image.  

The second strategy is used when a large PSF is needed, but its shape isn't
critical.  This calls for a filter kernel that is separable, a property that allows
the image convolution to be carried out as a series of one-dimensional
operations.  This can improve the execution speed by hundreds of times.

The third strategy is FFT convolution, used when the filter kernel is large and
has a specific shape.  Even with the speed improvements provided by  the
highly efficient FFT, the execution time will be hideous.  Let's take a closer
look at the details of these three strategies, and examples of how they are used
in image processing.

3×3 Edge Modification

Figure 24-4 shows several 3×3 operations.  Figure (a) is an image acquired by
an airport x-ray baggage scanner.  When this image is convolved with a 3×3
delta function (a one surrounded by 8 zeros), the image remains unchanged.
While this is not interesting by itself, it forms the baseline for the other filter
kernels.  

Figure (b) shows the image convolved with a 3×3 kernel consisting of a one,
a negative one, and 7 zeros.  This is called the shift and subtract operation,
because a shifted version of the image (corresponding to the -1) is subtracted
from the original image (corresponding to the 1).  This processing produces the
optical illusion that some objects are closer or farther away than the
background, making a 3D or embossed effect.  The brain interprets images as
if the lighting is from above, the normal way the world presents itself.  If the
edges of an object are bright on the top and dark on the bottom, the object is
perceived to be poking out from the background.  To see another interesting
effect, turn the picture upside down, and the objects will be pushed into the
background. 

Figure (c) shows an edge detection PSF, and the resulting image.  Every
edge in the original image is transformed into narrow dark and light bands
that run parallel to the original edge.  Thresholding this image can isolate
either the dark or light band, providing a simple algorithm for detecting the
edges in an image.
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FIGURE 24-4
3×3 edge modification.  The original image, (a), was acquired on an airport x-ray baggage scanner.  The shift and subtract
operation, shown in (b), results in a pseudo three-dimensional effect.  The edge detection operator in (c) removes all
contrast, leaving only the edge information.  The edge enhancement filter, (d), adds various ratios of images (a) and (c),
determined by the parameter, k.  A value of k = 2 was used to create this image.
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a. Delta function b. Shift and subtract

c. Edge detection d. Edge enhancement

A common image processing technique is shown in (d): edge enhancement.
This is sometimes called a sharpening operation.  In (a), the objects have good
contrast (an appropriate level of darkness and lightness) but very blurry edges.
In (c), the objects have absolutely no contrast, but very sharp edges.  The
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EQUATION 24-1
Image separation. An image is referred to
as separable if it can be decomposed into
horizontal and vertical projections. 

x[r,c ] ' vert [r] × horz [c ]

strategy is to multiply the image with good edges by a constant, k, and add it
to the image with good contrast.  This is equivalent to convolving the original
image with the 3×3 PSF shown in (d).  If k is set to 0, the PSF becomes a delta
function, and the image is left unchanged.  As k is made larger, the image
shows better edge definition. For the image in (d), a value of k = 2 was used:
two parts of image (c) to one part of image (a).  This operation mimics the
eye's ability to sharpen edges, allowing objects to be more easily separated
from the background.  

Convolution with any of these PSFs can result in negative pixel values
appearing in the final image.  Even if the program can handle negative values
for pixels, the image display cannot.  The most common way around this is to
add an offset to each of the calculated pixels, as is done in these images.  An
alternative is to truncate out-of-range values. 

Convolution by Separability

This is a technique for fast convolution, as long as the PSF is separable.  A
PSF is said to be separable if it can be broken into two one-dimensional
signals: a vertical and a horizontal projection.  Figure 24-5 shows an example
of a separable image, the square PSF.  Specifically, the value of each pixel in
the image is equal to the corresponding point in the horizontal projection
multiplied by the corresponding point in the vertical projection.  In
mathematical form:

where  is the two-dimensional image, and  &  are the one-x[r,c] vert[r] horz[c]
dimensional projections.  Obviously, most images do not satisfy this
requirement.  For example, the pillbox is not separable.  There are, however,
an infinite number of separable images.  This can be understood by generating
arbitrary horizontal and vertical projections, and finding the image that
corresponds to them.  For example, Fig. 24-6 illustrates this with profiles that
are double-sided exponentials.  The image that corresponds to these profiles is
then found from Eq. 24-1.  When displayed, the image  appears as a diamond
shape that exponentially decays to zero as the distance from the origin
increases.

In most image processing tasks, the ideal PSF is circularly symmetric, such
as the pillbox.  Even though digitized images are usually stored and
processed in the rectangular format of rows and columns, it is desired to
modify the image the same in all directions.  This raises the question: is
there a PSF that is circularly symmetric and separable?   The answer is, yes,
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FIGURE 24-5
Separation of the rectangular PSF.  A
PSF is said to be separable if it can be
decomposed into horizontal and vertical
profiles. Separable PSFs are important
because they can be rapidly convolved.
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the only PSF that is circularly symmetric
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but there is only one, the Gaussian.  As is shown in Fig. 24-7, a two-dimensional
Gaussian image has projections that are also Gaussians.  The image and
projection Gaussians have the same standard deviation.

To convolve an image with a separable filter kernel, convolve each row in the
image with the horizontal projection, resulting in an intermediate image.  Next,
convolve each column of this intermediate image with the vertical projection
of the PSF.  The resulting image is identical to the direct convolution of the
original image and the filter kernel.  If you like, convolve the columns first and
then the rows; the result is the same. 

The convolution of an  image with an  filter kernel requires a timeN×N M×M
proportional to .  In other words, each pixel in the output image dependsN 2M 2

on all the pixels in the filter kernel.  In comparison, convolution by separability
only requires a time proportional to .  For filter kernels that are hundredsN 2M
of pixels wide, this technique will reduce the execution time by a factor of
hundreds.

Things can get even better.  If you are willing to use a rectangular PSF (Fig.
24-5) or a double-sided exponential PSF (Fig. 24-6), the calculations are  even
more efficient.  This is because the one-dimensional convolutions are  the
moving average filter (Chapter 15) and the bidirectional single pole filter
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(Chapter 19),  respectively.  Both of these one-dimensional filters can be
rapidly carried out by recursion.  This results in an image convolution time
proportional to only , completely independent of the size of the PSF.  InN 2

other words, an image can be convolved with as large a PSF as needed, with
only a few integer operations per pixel.  For example, the convolution of a
512×512 image requires only a few hundred milliseconds on a personal
computer.  That's fast!   Don't like the shape of these two filter kernels?
Convolve the image with one of them several times to approximate a Gaussian
PSF (guaranteed by the Central Limit Theorem, Chapter 7).  These are great
algorithms, capable of snatching success from the jaws of failure.  They are
well worth remembering. 

Example of a Large PSF: Illumination Flattening

A common application requiring a large PSF is the enhancement of images
with unequal illumination.  Convolution by separability is an ideal
algorithm to carry out this processing.  With only a few exceptions, the
images seen by the eye are formed from reflected light.  This means that a
viewed image is equal to the reflectance of the objects multiplied by the
ambient illumination.  Figure 24-8 shows how this works.  Figure (a)
represents the reflectance of a scene being viewed, in this case, a series of
light and dark bands.   Figure (b) illustrates an example illumination signal,
the pattern of light falling on (a).  As in the real world, the illumination
slowly varies over the imaging area.  Figure (c) is the image seen by the
eye, equal to the reflectance image, (a), multiplied by the illumination
image, (b).  The regions of poor illumination are difficult to view in (c) for
two reasons: they are too dark and their contrast is too low (the difference
between the peaks and the valleys). 

To understand how this relates to the problem of every day vision, imagine you
are looking at two identically dressed men.  One of them is standing in the
bright sunlight, while the other is standing in the shade of a nearby tree.  The
percent of the incident light reflected from both men is the same.  For instance,
their faces might reflect 80% of the incident light, their gray shirts 40% and
their dark pants 5%.  The problem is, the illumination of the two might be, say,
ten times different.  This makes the image of the man in the shade ten times
darker than the person in the sunlight, and the contrast (between the face, shirt,
and pants) ten times less. 

The goal of the image processing is to flatten the illumination component
in the acquired image.  In other words, we want the final image to be
representative of the objects' reflectance, not the lighting conditions.  In
terms of Fig. 24-8, given (c), find (a). This is a nonlinear filtering problem,
since the component images were combined by multiplication, not addition.
While this separation cannot be performed perfectly, the improvement can
be dramatic. 

To start, we will convolve image (c) with a large PSF, one-fifth the size of the
entire image. The goal is to eliminate the sharp features in (c), resulting
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FIGURE 24-8
Model of image formation.  A viewed image, (c), results from the multiplication of an illumination
pattern, (b), by a reflectance pattern, (a).  The goal of the image processing is to modify (c) to make it
look more like (a).  This is performed in Figs. (d), (e) and (f) on the opposite page. 
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in an approximation to the original illumination signal, (b).  This is where
convolution by separability is used.  The exact shape of the PSF is not
important, only that it is much wider than the features in the reflectance image.
Figure (d) is the result, using a Gaussian filter kernel. 

Since a smoothing filter provides an estimate of the illumination image, we will
use an edge enhancement filter to find the reflectance image.  That is, image
(c) will be convolved with a filter kernel consisting of a delta function minus
a Gaussian.  To reduce execution time, this is done by subtracting the smoothed
image in (d) from the original image in (c).  Figure (e) shows the result.  It
doesn't work!  While the dark areas have been properly lightened, the contrast
in these areas is still terrible. 

Linear filtering performs poorly in this application because the reflectance and
illumination signals were original combined by multiplication, not addition.
Linear filtering cannot correctly separate signals combined by a nonlinear
operation.  To separate these signals, they must be unmultiplied. In other
words, the original image should be divided by the smoothed image, as is
shown in (f).  This corrects the brightness and restores the contrast to the
proper level.

This procedure of dividing the images is closely related to homomorphic
processing, previously described in Chapter 22.  Homomorphic processing is
a way of handling signals combined through a nonlinear operation.  The
strategy is to change the nonlinear problem into a linear one, through an
appropriate mathematical operation.  When two signals are combined by
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FIGURE 24-8 (continued)
Figure (d) is a smoothed version of (c), used as an approximation to the illumination signal.  Figure (e)
shows an approximation to the reflectance image, created by subtracting the smoothed image from the
viewed image.  A better approximation is shown in (f), obtained by the nonlinear process of dividing the
two images.

multiplication, homomorphic processing starts by taking the logarithm of the
acquired signal.  With the identity: , the problem oflog(a×b) ' log(a) % log(b)
separating multiplied signals is converted into the problem of separating added
signals.  For example, after taking the logarithm of the image in (c), a linear
high-pass filter can be used to isolate the logarithm of the reflectance image.
As before, the quickest way to carry out the high-pass filter is to subtract a
smoothed version of the image.  The antilogarithm (exponent) is then used to
undo the logarithm, resulting in the desired approximation to the reflectance
image.

Which is better, dividing or going along the homomorphic path?  They are
nearly the same, since taking the logarithm and subtracting is equal to dividing.
The only difference is the approximation used for the illumination image.   One
method uses a smoothed version of the acquired image, while the other uses a
smoothed version of the logarithm of the acquired image.
  
This technique of flattening the illumination signal is so useful it has been
incorporated into the neural structure of the eye.  The processing in the
middle layer of the retina was previously described as an edge enhancement
or high-pass filter.  While this is true, it doesn't tell the whole story.  The
first layer of the eye is nonlinear, approximately taking the logarithm of the
incoming image.  This makes the eye a homomorphic processor.  Just as
described above, the logarithm followed by a linear edge enhancement filter
flattens the illumination component, allowing the eye to see under poor
lighting conditions.   Another interesting use of homomorphic processing
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occurs in photography.  The density (darkness) of a negative is equal to the
logarithm of the brightness in the final photograph. This means that any
manipulation of the negative during the development stage is a type of
homomorphic processing. 

Before leaving this example, there is a nuisance that needs to be mentioned.
As discussed in Chapter 6, when an N point signal is convolved with an M
point filter kernel, the resulting signal is  points long.  Likewise, whenN%M&1
an  image is convolved with an  filter kernel, the result isM×M N×N
an  image. The problem is, it is often difficult to manage(M%N&1) × (M%N&1)
a changing image size.  For instance, the allocated memory must change, the
video display must be adjusted, the array indexing may need altering, etc.  The
common way around this is to ignore it; if we start with a  image, we512×512
want to end up with a  image.  The pixels that do not fit within the512×512
original boundaries are discarded.  

While this keeps the image size the same, it doesn't solve the whole problem;
these is still the boundary condition for convolution.  For example, imagine
trying to calculate the pixel at the upper-right corner of (d).  This is done by
centering the Gaussian PSF on the upper-right corner of (c).  Each pixel in (c)
is then multiplied by the corresponding pixel in the overlaying PSF, and the
products are added.  The problem is, three-quarters of the PSF lies outside the
defined image.  The easiest approach is to assign the undefined pixels a value
of zero.  This is how (d) was created, accounting for the dark band around the
perimeter of the image.  That is, the brightness smoothly decreases to the pixel
value of zero, exterior to the defined image. 

Fortunately, this dark region around the boarder can be corrected (although it
hasn't been in this example).  This is done by dividing each pixel in (d) by a
correction factor.  The correction factor is the fraction of the PSF that was
immersed in the input image when the pixel was calculated.  That is, to correct
an individual pixel in (d), imagine that the PSF is centered on the
corresponding pixel in (c).  For example, the upper-right pixel in (c) results
from only 25% of the PSF overlapping the input image.  Therefore, correct this
pixel in (d) by dividing it by a factor of 0.25.  This means that the pixels in the
center of (d) will not be changed, but the dark pixels around the perimeter will
be brightened. To find the correction factors, imagine convolving the filter
kernel with an image having all the pixel values equal to one.  The pixels in
the resulting image are the correction factors needed to eliminate the edge
effect.

Fourier Image Analysis

Fourier analysis is used in image processing in much the same way as with
one-dimensional signals.  However, images do not have their information
encoded in the frequency domain, making the techniques much less useful.  For
example, when the Fourier transform is taken of an audio signal, the confusing
time domain waveform is converted into an easy to understand frequency
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spectrum.   In comparison, taking the Fourier transform of an image converts
the straightforward information in the spatial domain into a scrambled form in
the frequency domain.  In short, don't expect the Fourier transform to help you
understand the information encoded in images.

Likewise, don't look to the frequency domain for filter design.   The basic
feature in images is the edge, the line separating one object or region from
another object or region.  Since an edge is composed of a wide range of
frequency components, trying to modify an image by manipulating the
frequency spectrum is generally not productive.  Image filters are normally
designed in the spatial domain, where the information is encoded in its simplest
form.  Think in terms of smoothing and edge enhancement operations (the
spatial domain) rather than high-pass and low-pass filters  (the frequency
domain). 

In spite of this, Fourier image analysis does have several useful properties.  For
instance, convolution in the spatial domain corresponds to multiplication in the
frequency domain.  This is important because multiplication is a simpler
mathematical operation than convolution.  As with one-dimensional signals, this
property enables FFT convolution and various deconvolution techniques.
Another useful property of the frequency domain is the Fourier Slice Theorem,
the relationship between an image and its projections (the image viewed from
its sides).  This is the basis of computed tomography, an x-ray imaging
technique widely used medicine and industry.

The frequency spectrum of an image can be calculated in several ways, but the
FFT method presented here is the only one that is practical.  The original image
must be composed of N rows by N columns, where N is a power of two, i.e.,
256, 512, 1024, etc.  If the size of the original image is not a power of two,
pixels with a value of zero are added to make it the correct size.  We will call
the two-dimensional array that holds the image the real array.  In addition,
another array of the same size is needed, which we will call the imaginary
array. 

The recipe for calculating the Fourier transform of an image is quite simple:
take the one-dimensional FFT of each of the rows, followed by the one-
dimensional FFT of each of the columns.  Specifically, start by taking the FFT
of the N pixel values in row 0 of the real array.  The real part of the FFT's
output is placed back into row 0 of the real array, while the imaginary part of
the FFT's output is placed into row 0 of the imaginary array.  After repeating
this procedure on rows 1 through , both the real and imaginary arraysN&1
contain an intermediate image.   Next, the procedure is repeated on each of the
columns of the intermediate data.  Take the N pixel values from column 0 of
the real array, and the N pixel values from column 0 of the imaginary array,
and calculate the FFT.   The real part of the FFT's output is placed back into
column 0 of the real array, while the imaginary part of the FFT's output is
placed back into column 0 of the imaginary array.  After this is repeated on
columns 1 through , both arrays have been overwritten with the image'sN&1
frequency spectrum.  
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Since the vertical and horizontal directions are equivalent in an image, this
algorithm can also be carried out by transforming the columns first and then
transforming the rows.  Regardless of the order used, the result is the same.
From the way that the FFT keeps track of the data, the amplitudes of the low
frequency components end up being at the corners of the two-dimensional
spectrum, while the high frequencies are at the center.  The inverse Fourier
transform of an image is calculated by taking the inverse FFT of each row,
followed by the inverse FFT of each column (or vice versa).  

Figure 24-9 shows an example Fourier transform of an image.  Figure (a) is the
original image, a microscopic view of the input stage of a 741 op amp
integrated circuit.  Figure (b) shows the real and imaginary parts of the
frequency spectrum of this image.  Since the frequency domain can contain
negative pixel values, the grayscale values of these images are offset such that
negative values are dark, zero is gray, and positive values are light.  The low-
frequency components in an image are normally much larger in amplitude than
the high-frequency components.  This accounts for the very bright and dark
pixels at the four corners of (b).  Other than this, the spectra of typical images
have no discernable order, appearing random.  Of course, images can be
contrived to have any spectrum you desire.

As shown in (c), the polar form of an image spectrum is only slightly easier to
understand.  The low-frequencies in the magnitude have large positive values
(the white corners), while the high-frequencies have small positive values (the
black center).  The phase looks the same at low and high-frequencies,
appearing to run randomly between -B and B radians.

Figure (d) shows an alternative way of displaying an image spectrum.  Since
the spatial domain contains a discrete signal, the frequency domain is
periodic.  In other words, the frequency domain arrays are duplicated an
infinite number of times to the left, right, top and bottom.  For instance,
imagine a tile wall, with each tile being the  magnitude shown in (c).N×N
Figure (d) is also an  section of this tile wall, but it straddles four tiles;N×N
the center of the image being where the four tiles touch.  In other words, (c)
is the same image as (d), except it has been shifted  pixels horizontallyN/2
(either left or right) and  pixels vertically (either up or down) in theN/2
periodic frequency spectrum.   This brings the bright pixels at the four
corners of (c) together in the center of (d).  

Figure 24-10 illustrates how the two-dimensional frequency domain is
organized (with the low-frequencies placed at the corners).   Row  andN/2
column  break the frequency spectrum into four quadrants.  For the realN/2
part and the magnitude, the upper-right quadrant is a mirror image of the
lower-left, while the upper-left is a mirror image of the lower-right.   This
symmetry also holds for the imaginary part and the phase, except that the
values of the mirrored pixels are opposite in sign.   In other words, every
point in the frequency spectrum has a matching point placed symmetrically
on the other side of the center of the image (row  and column ).  OneN/2 N/2
of the points is the positive frequency, while the other is the matching
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FIGURE 24-9
Frequency spectrum of an image.  The example image,
shown in (a), is a microscopic photograph of the silicon
surface of an integrated circuit.  The frequency spectrum
can be displayed as the real and imaginary parts, shown in
(b), or as the magnitude and phase, shown in (c).  Figures
(b) & (c) are displayed with the low-frequencies at the
corners and the high-frequencies at the center.  Since the
frequency domain is periodic, the display can be rearranged
to reverse these positions.  This is shown in (d), where the
magnitude and phase are displayed with the low-frequencies
located at the center and the high-frequencies at the corners.

Real Imaginary

Magnitude Phase

Magnitude Phase

c. Frequency spectrum displayed
in polar form (as the magnitude
and phase).

d. Frequency spectrum displayed
in polar form, with the spectrum
shifted to place zero frequency at
the center. 

b. Frequency spectrum displayed
in rectangular form (as the real
and imaginary parts).

a. Image
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Re X [r,c ] ' Re X [N& r,N& c]

Im X [r,c ] ' & Im X [N& r,N& c]

EQUATION 24-2
Symmetry of the two-dimensional frequency
domain.  These equations can be used in both
formats, when the low-frequencies are
displayed at the corners, or when shifting
places them at the center.  In polar form, the
magnitude has the same symmetry as the real
part, while the phase has the same symmetry
as the imaginary part.

negative frequency, as discussed in Chapter 10 for one-dimensional signals. In
equation form, this symmetry is expressed as:

These equations take into account that the frequency spectrum is periodic,
repeating itself every N samples with indexes running from 0 to .  In otherN&1
words,  should be interpreted as ,  as , andX [r,N ] X [r,0 ] X [N,c ] X [0,c ]

 as .  This symmetry makes four points in the spectrum matchX [N,N ] X [0,0 ]
with themselves.  These points are located at: , ,  and[0,0] [0,N/2] [N/2,0]

.[N/2,N/2]

Each pair of points in the frequency domain corresponds to a sinusoid in the
spatial domain.  As shown in (a), the value at  corresponds to the zero[0,0]
frequency sinusoid in the spatial domain, i.e., the DC component of the image.
There is only one point shown in this figure, because this is one of the points
that is its own match.  As shown in (b), (c), and (d), other pairs of points
correspond to two-dimensional sinusoids that look like waves on the ocean.
One-dimensional sinusoids have a frequency, phase, and amplitude.  Two
dimensional sinusoids also have a direction. 

The frequency and direction of each sinusoid is determined by the location of
the pair of points in the frequency domain.  As shown, draw a line from each
point to the zero frequency location at the outside corner of the quadrant that
the point is in, i.e.,  (as indicated by the[0,0], [0,N/2], [N/2,0], or [N/2,N/2]
circles in this figure). The direction of this line determines the direction of the
spatial sinusoid, while its length is proportional to the frequency of the wave.
This results in the low frequencies being positioned near the corners, and the
high frequencies near the center.

When the spectrum is displayed with zero frequency at the center ( Fig. 24-9d),
the line from each pair of points is drawn to the DC value at the center of the
image, i.e., [ , ].  This organization is simpler to understand and workN/2 N/2
with, since all the lines are drawn to the same point.  Another advantage of
placing zero at the center is that it matches the frequency spectra of continuous
images.  When the spatial domain is continuous, the frequency domain is
aperiodic.  This places zero frequency at the center, with the frequency
becoming higher in all directions out to infinity.  In general, the frequency
spectra of discrete images are displayed with zero frequency at the center
whenever people will view the data, in textbooks, journal articles, and
algorithm documentation.  However, most calculations are carried out with the
computer arrays storing data in the other format (low-frequencies at the
corners).  This is because the FFT has this format.
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FIGURE 24-10
Two-dimensional sinusoids.
Image sine and cosine waves
have both a frequency and a
direction. Four examples are
shown here. These spectra
are displayed with the low-
frequencies at the corners.
The circles in these spectra
show the location of zero
frequency.
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Even with the FFT, the time required to calculate the Fourier transform is
a tremendous bottleneck in image processing.  For example, the Fourier
transform of a 512×512 image requires several minutes on a personal
computer.  This is roughly 10,000 times slower than needed for real time
image processing, 30 frames per second.  This long execution time results
from the massive amount of information contained in images.  For
comparison, there are about the same number of  pixels in a typical image,
as there are words in this book.  Image processing via the frequency domain
will become more popular as computers become faster.  This is a twenty-
first century technology; watch it emerge!

FFT Convolution

Even though the Fourier transform is slow, it is still the fastest way to
convolve an image with a large filter kernel.  For example, convolving a
512×512 image with a 50×50 PSF is about 20 times faster using the FFT
compared with conventional convolution.  Chapter 18 discusses how FFT
convolution works for one-dimensional signals.  The two-dimensional version
is a simple extension.  

We will demonstrate FFT convolution with an example, an algorithm to  locate
a predetermined pattern in an image.  Suppose we build a system for inspecting
one-dollar bills, such as might be used for printing quality control,
counterfeiting detection, or payment verification in a vending machine.  As
shown in Fig. 24-11, a 100×100 pixel image is acquired of the bill, centered
on the portrait of George Washington.  The goal is to search this image for a
known pattern, in this example, the 29×29 pixel image of the face.  The
problem is this: given an acquired image and a known pattern, what is the most
effective way to locate where (or if) the pattern appears in the image?  If you
paid attention in Chapter 6, you know that the solution to this problem is
correlation (a matched filter) and that it can be implemented by using
convolution.  

Before performing the actual convolution, there are two modifications that need
to be made to turn the target image into a PSF.  These are illustrated in Fig.
24-12.  Figure (a) shows the target signal, the pattern we are trying to detect.
In (b), the image has been rotated by 180E, the same as being flipped left-for-
right and then flipped top-for-bottom.  As discussed in Chapter 7, when
performing correlation by using convolution, the target signal needs to be
reversed to counteract the reversal that occurs during  convolution.  We will
return to this issue shortly.

The second modification is a trick for improving the effectiveness of the
algorithm.  Rather than trying to detect the face in the original image, it is
more effective to detect the edges of the face in the edges of the original
image.  This is because the edges are sharper than the original features,
making the correlation have a sharper peak.   This step isn't required, but it
makes the results significantly better.   In the simplest form, a  3×3 edge
detection filter is applied to both the original image and the target signal
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FIGURE 24-11
Target detection example.  The problem is to search the 100×100 pixel image of George Washington,
(a), for the target pattern, (b), the 29×29 pixel face.  The optimal solution is correlation, which can be
carried out by convolution. 
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FIGURE 24-12
Development of a correlation filter kernel.  The target signal is shown in (a).  In (b) it is rotated by 180E
to undo the rotation inherent in convolution, allowing correlation to be performed.  Applying an edge
detection filter results in (c), the filter kernel used for this example.

before the correlation is performed.   From the associative property of
convolution, this is the same as applying the edge detection filter to the target
signal twice, and leaving the original image alone.   In actual practice, applying
the edge detection 3×3 kernel only once is generally sufficient. This is how (b)
is changed into (c) in Fig. 24-12.  This makes (c) the PSF to be used in the
convolution

Figure 24-13 illustrates the details of FFT convolution.  In this example, we
will convolve image (a) with image (b) to produce image (c).  The fact that
these images have been chosen and preprocessed to implement correlation
is irrelevant; this is a flow diagram of convolution.  The first step is to pad
both signals being convolved with enough zeros to make them a power
of two in size, and big enough to hold the final image.   For instance, when
images of 100×100 and 29×29 pixels are convolved, the resulting image
will be 128×128 pixels.  Therefore, enough zeros must be added to (a) and
(b) to  make them each 128×128 pixels in size.  If this isn't done, circular
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convolution takes place and the final image will be distorted.  If you are having
trouble understanding these concepts, go back and review Chapter 18, where
the one-dimensional case is discussed in more detail.  

The FFT algorithm is used to transform (a) and (b) into the frequency
domain.  This results in four 128×128 arrays, the real and imaginary parts
of the two images being convolved.   Multiplying the real and imaginary
parts of (a) with the real and imaginary parts of (b), generates the real and
imaginary parts of (c).  (If you need to be reminded how this is done, see
Eq. 9-1).  Taking the Inverse FFT completes the algorithm by producing the
final convolved image. 

The value of each pixel in a correlation image is a measure of how well the
target image matches the searched image at that point.  In this particular
example, the correlation image in (c) is composed of noise plus a single bright
peak, indicating a good match to the target signal.  Simply locating the
brightest pixel in this image would specify the detected coordinates of the face.
If we had not used the edge detection modification on the target signal, the peak
would still be present, but much less distinct.  

While correlation is a powerful tool in image processing, it suffers from a
significant limitation: the target image must be exactly the same size and
rotational orientation as the corresponding area in the searched image.  Noise
and other variations in the amplitude of each pixel are relatively unimportant,
but an exact spatial match is critical.  For example, this makes the method
almost useless for finding enemy tanks in military reconnaissance photos,
tumors in medical images, and handguns in airport baggage scans.  One
approach is to correlate the image multiple times with a variety of shapes and
rotations of the target image.  This works in principle, but the execution time
will make you loose interest in a hurry.

A Closer Look at Image Convolution

Let's use this last example to explore two-dimensional convolution in more
detail.  Just as with one dimensional signals, image convolution can be
viewed from either the input side or the output side.  As you recall from
Chapter 6, the input viewpoint is the best description of how convolution
works, while the output viewpoint is how most of the mathematics and
algorithms are written.  You need to become comfortable with both these
ways of looking at the operation.

Figure 24-14 shows the input side description of image convolution.  Every
pixel in the input image results in a scaled and shifted PSF being added to
the output image.  The output image is then calculated as the sum of all the
contributing PSFs.  This illustration show the contribution to the output
image from the point at location [r,c] in the input image.  The PSF is
shifted such that pixel [0,0] in the PSF aligns with pixel [r,c] in the output
image.  If the PSF is defined with only positive indexes, such as in this
example, the shifted PSF will be entirely to the lower-right of [r,c].  Don't
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FIGURE 24-13
Flow diagram of FFT image convolution.  The images in (a) and (b) are transformed into the frequency domain
by using the FFT.  These two frequency spectra are multiplied, and the Inverse FFT is used to move back into
the spatial domain.  In this example, the original images have been chosen and preprocessed to implement
correlation through the action of convolution. 
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FIGURE 24-14
Image convolution viewed from the input side.  Each pixel in the input image contributes a scaled
and shifted PSF to the output image.  The output image is the sum of these contributions. The face
is inverted in this illustration because this is the PSF we are using.
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EQUATION 24-3
Image convolution.  The images  andx[ , ]

 are convolved to produce image, .h[ , ] y[ , ]
The size of  is M×M pixels, with theh[ , ]
indexes running from 0 to .  In thisM&1
equation, an individual pixel in the output
image, , is calculated according to they[r,c]
output side view.  The indexes j and k are used
to loop through the rows and columns of h[ , ]
to calculate the sum-of-products. 

be confused by the face appearing upside down in this figure; this upside down
face is the PSF we are using in this example (Fig. 24-13a).   In the input side
view, there is no rotation of the PSF, it is simply shifted. 

Image convolution viewed from the output is illustrated in Fig. 24-15.  Each
pixel in the output image, such as shown by the sample at [r,c], receives a
contribution from many pixels in the input image.  The PSF is rotated by 180E
around pixel [0,0], and then shifted such that pixel [0,0] in the PSF is aligned
with pixel [r,c] in the input image.  If the PSF only uses positive indexes, it
will be to the upper-left of pixel [r,c] in the input image.  The value of the
pixel at [r,c] in the output image is found by multiplying the pixels in the
rotated PSF with the corresponding pixels in the input image, and summing the
products.  This procedure is given by Eq. 24-3, and in the program of Table
24-1.

Notice that the PSF rotation resulting from the convolution has undone the
rotation made in the design of the PSF.  This makes the face appear upright
in Fig. 24-15, allowing it to be in the same orientation as the pattern being
detected in the input image.  That is, we have successfully used convolution
to implement correlation.  Compare Fig. 24-13c with Fig. 24-15 to see how
the bright spot in the correlation image signifies that the target has been
detected.  
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FIGURE 24-15
Image convolution viewed from the output side.  Each pixel in the output signal is equal to the sum
of the pixels in the rotated PSF multiplied by the corresponding pixels in the input image.  
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100 CONVENTIONAL IMAGE CONVOLUTION
110 '
120 DIM X[99,99] 'holds the input image,   100×100 pixels
130 DIM H[28,28] 'holds the filter kernel,   29×29 pixels 
140 DIM Y[127,127] 'holds the output image, 128×128 pixels
150 '
160 FOR R% = 0 TO 127 'loop through each row and column in the output
170 FOR C% = 0 TO 127 'image calculating the pixel value via Eq. 24-3
180 '
190   Y[R%,C%] = 0 'zero the pixel so it can be used as an accumulator
200 '
210   FOR J% = 0 TO 28 'multiply each pixel in the kernel by the corresponding
220   FOR K% = 0 TO 28 'pixel in the input image, and add to the accumulator
230      Y[R%,C%] = Y[R%,C%] + H[J%,K%] * X[R%-J%,C%-J%]
240   NEXT K%
250   NEXT J%
260 '
270 NEXT C%
280 NEXT R%
290 '   
300 END

   TABLE 24-1

FFT convolution provides the same output image as the conventional
convolution program of Table 24-1.  Is the reduced execution time provided by
FFT convolution really worth the additional program complexity?  Let's take
a closer look.  Figure 24-16 shows an execution time comparison between
conventional convolution using floating point (labeled FP), conventional
convolution using integers (labeled INT), and FFT convolution using floating
point (labeled FFT).  Data for two different image sizes are presented,
512×512 and 128×128.

First, notice that the execution time required for FFT convolution does not
depend on the size of the kernel, resulting in flat lines in this graph.  On a 100
MHz Pentium personal computer,  a 128×128 image can be convolved
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FIGURE 24-16
Execution time for image convolution. This
graph shows the execution time on a 100 MHz
Pentium processor for three image convolution
methods: conventional convolution carried out
with floating point math (FP), conventional
convolution using integers (INT), and FFT
convolution using floating point (FFT).   The
two sets of curves are for input image sizes of
512×512 and 128×128 pixels. Using FFT
convolution, the time depends only on the
image size, and not the size of the kernel.  In
contrast, conventional convolution depends on
both the image and the kernel size.
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in about 15 seconds using FFT convolution, while a 512×512 image requires
more than 4 minutes.  Adding up the number of calculations shows that the
execution time for FFT convolution is proportional to , for an N×NN 2Log2(N)
image.   That is, a 512×512 image requires about 20 times as long as a
128×128 image. 

Conventional convolution has an execution time proportional to  for anN 2M 2

N×N image convolved with an M×M kernel.  This can be understood by
examining the program in Table 24-1.  In other words, the execution time for
conventional convolution depends very strongly on the size of the kernel used.
As shown in the graph, FFT convolution is faster than conventional convolution
using floating point if the kernel is larger than about 10×10 pixels.  In most
cases, integers can be used for conventional convolution, increasing the break-
even point to about 30×30 pixels.  These break-even points depend slightly on
the size of the image being convolved, as shown in the graph.  The concept to
remember is that FFT convolution is only useful for large filter kernels.


