
297

CHAPTER

17
Custom Filters

Most filters have one of the four standard frequency responses: low-pass, high-pass, band-pass
or band-reject. This chapter presents a general method of designing digital filters with an
arbitrary frequency response, tailored to the needs of your particular application. DSP excels
in this area, solving problems that are far above the capabilities of analog electronics. Two
important uses of custom filters are discussed in this chapter: deconvolution, a way of restoring
signals that have undergone an unwanted convolution, and optimal filtering, the problem of
separating signals with overlapping frequency spectra. This is DSP at its best.

Arbitrary Frequency Response

The approach used to derive the windowed-sinc filter in the last chapter can
also be used to design filters with virtually any frequency response. The only
difference is how the desired response is moved from the frequency domain into
the time domain. In the windowed-sinc filter, the frequency response and the
filter kernel are both represented by equations, and the conversion between
them is made by evaluating the mathematics of the Fourier transform. In the
method presented here, both signals are represented by arrays of numbers, with
a computer program (the FFT) being used to find one from the other.

Figure 17-1 shows an example of how this works. The frequency response
we want the filter to produce is shown in (a). To say the least, it is very
irregular and would be virtually impossible to obtain with analog
electronics. This ideal frequency response is defined by an array of
numbers that have been selected, not some mathematical equation. In this
example, there are 513 samples spread between 0 and 0.5 of the sampling
rate. More points could be used to better represent the desired frequency
response, while a smaller number may be needed to reduce the computation
time during the filter design. However, these concerns are usually small,
and 513 is a good length for most applications.

The Scientist and Engineer's Guide to Digital Signal Processing298

100 'CUSTOM FILTER DESIGN
110 'This program converts an aliased 1024 point impulse response into an M+1 point
120 'filter kernel (such as Fig. 17-1b being converted into Fig. 17-1c)
130 '
140 DIM REX[1023] 'REX[] holds the signal being converted
150 DIM T[1023] 'T[] is a temporary storage buffer
160 '
170 PI = 3.14159265
180 M% = 40 'Set filter kernel length (41 total points)
190 '
200 GOSUB XXXX 'Mythical subroutine to load REX[] with impulse response
210 '
220 FOR I% = 0 TO 1023 'Shift (rotate) the signal M/2 points to the right
230 INDEX% = I% + M%/2
240 IF INDEX% > 1023 THEN INDEX% = INDEX%-1024
250 T[INDEX%] = REX[I%]
260 NEXT I%
270 '
280 FOR I% = 0 TO 1023
290 REX[I%] = T[I%]
300 NEXT I%
310 ' 'Truncate and window the signal
320 FOR I% = 0 TO 1023
330 IF I% <= M% THEN REX[I%] = REX[I%] * (0.54 - 0.46 * COS(2*PI*I%/M%))
340 IF I% > M% THEN REX[I%] = 0
350 NEXT I%
360 ' 'The filter kernel now resides in REX[0] to REX[40]
370 END

 TABLE 17-1

Besides the desired magnitude array shown in (a), there must be a
corresponding phase array of the same length. In this example, the phase
of the desired frequency response is entirely zero (this array is not shown
in Fig. 17-1). Just as with the magnitude array, the phase array can be
loaded with any arbitrary curve you would like the filter to produce.
However, remember that the first and last samples (i.e., 0 and 512) of the
phase array must have a value of zero (or a multiple of 2B, which is the
same thing). The frequency response can also be specified in rectangular
form by defining the array entries for the real and imaginary parts, instead
of using the magnitude and phase.

The next step is to take the Inverse DFT to move the filter into the time
domain. The quickest way to do this is to convert the frequency domain to
rectangular form, and then use the Inverse FFT. This results in a 1024
sample signal running from 0 to 1023, as shown in (b). This is the impulse
response that corresponds to the frequency response we want; however, it
is not suitable for use as a filter kernel (more about this shortly). Just as
in the last chapter, it needs to be shifted, truncated, and windowed. In this
example, we will design the filter kernel with , i.e., 41 pointsM ' 40
running from sample 0 to sample 40. Table 17-1 shows a computer program
that converts the signal in (b) into the filter kernel shown in (c). As with
the windowed-sinc filter, the points near the ends of the filter kernel are so
small that they appear to be zero when plotted. Don't make the mistake of
thinking they can be deleted!

Chapter 17- Custom Filters 299

Time Domain

Frequency
0 0.1 0.2 0.3 0.4 0.5

0

1

2

3

a. Desired frequency response

Sample number
0 256 512 768 1024

-0.5

0.0

0.5

1.0

1.5

b. Impulse response (aliased)

1023

Frequency
0 0.1 0.2 0.3 0.4 0.5

0

1

2

3

d. Actual frequency response

Sample number
0 10 20 30 40 50

-0.5

0.0

0.5

1.0

1.5

c. Filter kernel

1023

added
zeros

Frequency Domain

FIGURE 17-1
Example of FIR filter design. Figure (a) shows the desired frequency response, with 513 samples running
between 0 to 0.5 of the sampling rate. Taking the Inverse DFT results in (b), an aliased impulse response
composed of 1024 samples. To form the filter kernel, (c), the aliased impulse response is truncated to M%1
samples, shifted to the right by samples, and multiplied by a Hamming or Blackman window. In thisM/2
example, M is 40. The program in Table 17-1 shows how this is done. The filter kernel is tested by padding
it with zeros and taking the DFT, providing the actual frequency response of the filter, (d).

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de
A

m
pl

itu
de

The last step is to test the filter kernel. This is done by taking the DFT (using
the FFT) to find the actual frequency response, as shown in (d). To obtain
better resolution in the frequency domain, pad the filter kernel with zeros
before the FFT. For instance, using 1024 total samples (41 in the filter kernel,
plus 983 zeros), results in 513 samples between 0 and 0.5.

As shown in Fig. 17-2, the length of the filter kernel determines how well the
actual frequency response matches the desired frequency response. The
exceptional performance of FIR digital filters is apparent; virtually any
frequency response can be obtained if a long enough filter kernel is used.

This is the entire design method; however, there is a subtle theoretical issue
that needs to be clarified. Why isn't it possible to directly use the impulse
response shown in 17-1b as the filter kernel? After all, if (a) is the Fourier
transform of (b), wouldn't convolving an input signal with (b) produce the exact
frequency response we want? The answer is no, and here's why.

The Scientist and Engineer's Guide to Digital Signal Processing300

When designing a custom filter, the desired frequency response is defined by
the values in an array. Now consider this: what does the frequency response
do between the specified points? For simplicity, two cases can be imagined,
one "good" and one "bad." In the "good" case, the frequency response is a
smooth curve between the defined samples. In the "bad" case, there are wild
fluctuations between. As luck would have it, the impulse response in (b)
corresponds to the "bad" frequency response. This can be shown by padding
it with a large number of zeros, and then taking the DFT. The frequency
response obtained by this method will show the erratic behavior between the
originally defined samples, and look just awful.

To understand this, imagine that we force the frequency response to be what
we want by defining it at an infinite number of points between 0 and 0.5.
That is, we create a continuous curve. The inverse DTFT is then used to
find the impulse response, which will be infinite in length. In other words,
the "good" frequency response corresponds to something that cannot be
represented in a computer, an infinitely long impulse response. When we
represent the frequency spectrum with samples, only N points areN/2 % 1
provided in the time domain, making it unable to correctly contain the
signal. The result is that the infinitely long impulse response wraps up
(aliases) into the N points. When this aliasing occurs, the frequency
response changes from "good" to "bad." Fortunately, windowing the N
point impulse response greatly reduces this aliasing, providing a smooth
curve between the frequency domain samples.

Designing a digital filter to produce a given frequency response is quite simple.
The hard part is finding what frequency response to use. Let's look at some
strategies used in DSP to design custom filters.

Deconvolution

Unwanted convolution is an inherent problem in transferring analog
information. For instance, all of the following can be modeled as a
convolution: image blurring in a shaky camera, echoes in long distance
telephone calls, the finite bandwidth of analog sensors and electronics, etc.
Deconvolution is the process of filtering a signal to compensate for an
undesired convolution. The goal of deconvolution is to recreate the signal as
it existed before the convolution took place. This usually requires the
characteristics of the convolution (i.e., the impulse or frequency response) to
be known. This can be distinguished from blind deconvolution, where the
characteristics of the parasitic convolution are not known. Blind deconvolution
is a much more difficult problem that has no general solution, and the approach
must be tailored to the particular application.

Deconvolution is nearly impossible to understand in the time domain, but
quite straightforward in the frequency domain. Each sinusoid that composes
the original signal can be changed in amplitude and/or phase as it passes
through the undesired convolution. To extract the original signal, the
deconvolution filter must undo these amplitude and phase changes. For

Chapter 17- Custom Filters 301

Frequency
0 0.1 0.2 0.3 0.4 0.5

0

1

2

3

a. M = 10

Frequency
0 0.1 0.2 0.3 0.4 0.5

0

1

2

3

c. M = 100

FIGURE 17-2
Frequency response vs. filter kernel length.
These figures show the frequency responses
obtained with various lengths of filter kernels.
The number of points in each filter kernel is
equal to , running from 0 to M. As moreM%1
points are used in the filter kernel, the resulting
frequency response more closely matches the
desired frequency response. Figure 17-1a shows
the desired frequency response for this example.

Frequency
0 0.1 0.2 0.3 0.4 0.5

0

1

2

3

d. M = 300

Frequency
0 0.1 0.2 0.3 0.4 0.5

0

1

2

3

e. M = 1000

Frequency
0 0.1 0.2 0.3 0.4 0.5

0

1

2

3

b. M = 30

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de

A
m

pl
itu

de
A

m
pl

itu
de

example, if the convolution changes a sinusoid's amplitude by 0.5 with a 30
degree phase shift, the deconvolution filter must amplify the sinusoid by 2.0
with a -30 degree phase change.

The example we will use to illustrate deconvolution is a gamma ray detector.
As illustrated in Fig. 17-3, this device is composed of two parts, a scintillator
and a light detector. A scintillator is a special type of transparent material,
such as sodium iodide or bismuth germanate. These compounds change the
energy in each gamma ray into a brief burst of visible light. This light

The Scientist and Engineer's Guide to Digital Signal Processing302

gamma ray

scintillator

light detector

amplifier

Time Time

light

FIGURE 17-3
Example of an unavoidable convolution. A gamma ray detector can be formed by mounting a scintillator on
a light detector. When a gamma ray strikes the scintillator, its energy is converted into a pulse of light. This
pulse of light is then converted into an electronic signal by the light detector. The gamma ray is an impulse,
while the output of the detector (i.e., the impulse response) resembles a one-sided exponential.

E
ne

rg
y

V
ol

ta
ge

is then converted into an electronic signal by a light detector, such as a
photodiode or photomultiplier tube. Each pulse produced by the detector
resembles a one-sided exponential, with some rounding of the corners. This
shape is determined by the characteristics of the scintillator used. When a
gamma ray deposits its energy into the scintillator, nearby atoms are excited to
a higher energy level. These atoms randomly deexcite, each producing a single
photon of visible light. The net result is a light pulse whose amplitude decays
over a few hundred nanoseconds (for sodium iodide). Since the arrival of each
gamma ray is an impulse, the output pulse from the detector (i.e., the one-sided
exponential) is the impulse response of the system.

Figure 17-4a shows pulses generated by the detector in response to randomly
arriving gamma rays. The information we would like to extract from this
output signal is the amplitude of each pulse, which is proportional to the
energy of the gamma ray that generated it. This is useful information because
the energy can tell interesting things about where the gamma ray has been. For
example, it may provide medical information on a patient, tell the age of a
distant galaxy, detect a bomb in airline luggage, etc.

Everything would be fine if only an occasional gamma ray were detected, but
this is usually not the case. As shown in (a), two or more pulses may overlap,
shifting the measured amplitude. One answer to this problem is to deconvolve
the detector's output signal, making the pulses narrower so that less pile-up
occurs. Ideally, we would like each pulse to resemble the original impulse. As
you may suspect, this isn't possible and we must settle for a pulse that is finite
in length, but significantly shorter than the detected pulse. This goal is
illustrated in Fig. 17-4b.

Chapter 17- Custom Filters 303

Sample number
0 100 200 300 400 500

-1

0

1

2

a. Detected pulses

Sample number
0 100 200 300 400 500

-1

0

1

2

b. Filtered pulses

FIGURE 17-4
Example of deconvolution. Figure (a) shows the output signal from a gamma ray detector in response to a
series of randomly arriving gamma rays. The deconvolution filter is designed to convert (a) into (b), by
reducing the width of the pulses. This minimizes the amplitude shift when pulses land on top of each other.

A
m

pl
itu

de

A
m

pl
itu

de

Even though the detector signal has its information encoded in the time
domain, much of our analysis must be done in the frequency domain, where
the problem is easier to understand. Figure 17-5a is the signal produced by
the detector (something we know). Figure (c) is the signal we wish to have
(also something we know). This desired pulse was arbitrarily selected to
be the same shape as a Blackman window, with a length about one-third
that of the original pulse. Our goal is to find a filter kernel, (e), that when
convolved with the signal in (a), produces the signal in (c). In equation
form: if , and given a and c, find e.a t e ' c

If these signals were combined by addition or multiplication instead of
convolution, the solution would be easy: subtraction is used to "de-add" and
division is used to "de-multiply." Convolution is different; there is not a simple
inverse operation that can be called "deconvolution." Convolution is too messy
to be undone by directly manipulating the time domain signals.

Fortunately, this problem is simpler in the frequency domain. Remember,
convolution in one domain corresponds with multiplication in the other domain.
Again referring to the signals in Fig. 17-5: if , and given b and d, findb × f ' d
f. This is an easy problem to solve: the frequency response of the filter, (f),
is the frequency spectrum of the desired pulse, (d), divided by the frequency
spectrum of the detected pulse, (b). Since the detected pulse is asymmetrical,
it will have a nonzero phase. This means that a complex division must be used
(that is, a magnitude & phase divided by another magnitude & phase). In case
you have forgotten, Chapter 9 defines how to perform a complex division of
one spectrum by another. The required filter kernel, (e), is then found from the
frequency response by the custom filter method (IDFT, shift, truncate, &
multiply by a window).

There are limits to the improvement that deconvolution can provide. In
other words, if you get greedy, things will fall apart. Getting greedy in this

The Scientist and Engineer's Guide to Digital Signal Processing304

example means trying to make the desired pulse excessively narrow. Let's look
at what happens. If the desired pulse is made narrower, its frequency spectrum
must contain more high frequency components. Since these high frequency
components are at a very low amplitude in the detected pulse, the filter must
have a very high gain at these frequencies. For instance, (f) shows that some
frequencies must be multiplied by a factor of three to achieve the desired pulse
in (c). If the desired pulse is made narrower, the gain of the deconvolution
filter will be even greater at high frequencies.

The problem is, small errors are very unforgiving in this situation. For
instance, if some frequency is amplified by 30, when only 28 is required, the
deconvolved signal will probably be a mess. When the deconvolution is pushed
to greater levels of performance, the characteristics of the unwanted
convolution must be understood with greater accuracy and precision. There
are always unknowns in real world applications, caused by such villains as:
electronic noise, temperature drift, variation between devices, etc. These
unknowns set a limit on how well deconvolution will work.

Even if the unwanted convolution is perfectly understood, there is still a
factor that limits the performance of deconvolution: noise. For instance,
most unwanted convolutions take the form of a low-pass filter, reducing the
amplitude of the high frequency components in the signal. Deconvolution
corrects this by amplifying these frequencies. However, if the amplitude of
these components falls below the inherent noise of the system, the
information contained in these frequencies is lost. No amount of signal
processing can retrieve it. It's gone forever. Adios! Goodbye! Sayonara!
Trying to reclaim this data will only amplify the noise. As an extreme case,
the amplitude of some frequencies may be completely reduced to zero. This
not only obliterates the information, it will try to make the deconvolution
filter have infinite gain at these frequencies. The solution: design a less
aggressive deconvolution filter and/or place limits on how much gain is
allowed at any of the frequencies.

How far can you go? How greedy is too greedy? This depends totally on the
problem you are attacking. If the signal is well behaved and has low noise, a
significant improvement can probably be made (think a factor of 5-10). If the
signal changes over time, isn't especially well understood, or is noisy, you
won't do nearly as well (think a factor of 1-2). Successful deconvolution
involves a great deal of testing. If it works at some level, try going farther;
you will know when it falls apart. No amount of theoretical work will allow
you to bypass this iterative process.

Deconvolution can also be applied to frequency domain encoded signals. A
classic example is the restoration of old recordings of the famous opera
singer, Enrico Caruso (1873-1921). These recordings were made with very
primitive equipment by modern standards. The most significant problem
is the resonances of the long tubular recording horn used to gather the
sound. Whenever the singer happens to hit one of these resonance
frequencies, the loudness of the recording abruptly increases. Digital
deconvolution has improved the subjective quality of these recordings by

Chapter 17- Custom Filters 305

Sample number
0 10 20 30 40 50

-0.5

0.0

0.5

1.0

1.5

a. Detected pulse

Gamma ray strikes

Frequency
0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

b. Detected frequency spectrum

Frequency
0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

d. Desired frequency spectrum

Frequency DomainTime Domain

Sample number
0 10 20 30 40 50

-0.5

0.0

0.5

1.0

1.5

c. Desired pulse

Sample number
0 10 20 30 40 50

-0.4

-0.2

0.0

0.2

0.4

e. Required filter kernel

Frequency
0 0.1 0.2 0.3 0.4 0.5

0.0

1.0

2.0

3.0

4.0

f. Required Frequency response

FIGURE 17-5
Example of deconvolution in the time and frequency domains. The impulse response of the example gamma ray detector
is shown in (a), while the desired impulse response is shown in (c). The frequency spectra of these two signals are shown
in (b) and (d), respectively. The filter that changes (a) into (c) has a frequency response, (f), equal to (b) divided by (d). The
filter kernel of this filter, (e), is then found from the frequency response using the custom filter design method (inverse DFT,
truncation, windowing). Only the magnitudes of the frequency domain signals are shown in this illustration; however, the
phases are nonzero and must also be used.

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de
A

m
pl

itu
de

reducing the loud spots in the music. We will only describe the general
method; for a detailed description, see the original paper: T. Stockham, T.
Cannon, and R. Ingebretsen, "Blind Deconvolution Through Digital Signal
Processing", Proc. IEEE, vol. 63, Apr. 1975, pp. 678-692.

The Scientist and Engineer's Guide to Digital Signal Processing306

Frequency

b. Frequency response

Frequency Frequency

Frequency

Frequency

Undesired
Convolution

Deconvolution

d. Frequency response

a. Original spectrum c. Recorded spectrum e. Deconvolved spectrum

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

FIGURE 17-6
Deconvolution of old phonograph recordings. The frequency spectrum produced by the original singer is
illustrated in (a). Resonance peaks in the primitive equipment, (b), produce distortion in the recorded
frequency spectrum, (c). The frequency response of the deconvolution filter, (d), is designed to counteracts
the undesired convolution, restoring the original spectrum, (e). These graphs are for illustrative purposes only;
they are not actual signals.

Figure 17-6 shows the general approach. The frequency spectrum of the
original audio signal is illustrated in (a). Figure (b) shows the frequency
response of the recording equipment, a relatively smooth curve except for
several sharp resonance peaks. The spectrum of the recorded signal, shown in
(c), is equal to the true spectrum, (a), multiplied by the uneven frequency
response, (b). The goal of the deconvolution is to counteract the undesired
convolution. In other words, the frequency response of the deconvolution filter,
(d), must be the inverse of (b). That is, each peak in (b) is cancelled by a
corresponding dip in (d). If this filter were perfectly designed, the resulting
signal would have a spectrum, (e), identical to that of the original. Here's the
catch: the original recording equipment has long been discarded, and its
frequency response, (b), is a mystery. In other words, this is a blind
deconvolution problem; given only (c), how can we determine (d)?

Blind deconvolution problems are usually attacked by making an estimate
or assumption about the unknown parameters. To deal with this example,
the average spectrum of the original music is assumed to match the average
spectrum of the same music performed by a present day singer using modern
equipment. The average spectrum is found by the techniques of Chapter 9:

Chapter 17- Custom Filters 307

Sample number
0 100 200 300 400 500

-0.5

0.0

0.5

1.0

1.5

a. Signal + noise (time domain)

signal

noise

Frequency
0 0.1 0.2 0.3 0.4 0.5

0

5

10

15

signal

noise

b. Signal + noise (frequency spectrum)

FIGURE 17-7
Example of optimal filtering. In (a), an exponential pulse buried in random noise. The frequency spectra of
the pulse and noise are shown in (b). Since the signal and noise overlap in both the time and frequency
domains, the best way to separate them isn't obvious.

A
m

pl
itu

de

A
m

pl
itu

de

break the signal into a large number of segments, take the DFT of each
segment, convert into polar form, and then average the magnitudes together.
In the simplest case, the unknown frequency response is taken as the average
spectrum of the old recording, divided by the average spectrum of the modern
recording. (The method used by Stockham et al. is based on a more
sophisticated technique called homomorphic processing, providing a better
estimate of the characteristics of the recording system).

Optimal Filters

Figure 17-7a illustrates a common filtering problem: trying to extract a
waveform (in this example, an exponential pulse) buried in random noise. As
shown in (b), this problem is no easier in the frequency domain. The signal has
a spectrum composed mainly of low frequency components. In comparison, the
spectrum of the noise is white (the same amplitude at all frequencies). Since
the spectra of the signal and noise overlap, it is not clear how the two can best
be separated. In fact, the real question is how to define what "best" means.
We will look at three filters, each of which is "best" (optimal) in a different
way. Figure 17-8 shows the filter kernel and frequency response for each of
these filters. Figure 17-9 shows the result of using these filters on the example
waveform of Fig. 17-7a.

The moving average filter is the topic of Chapter 15. As you recall, each
output point produced by the moving average filter is the average of a certain
number of points from the input signal. This makes the filter kernel a
rectangular pulse with an amplitude equal to the reciprocal of the number of
points in the average. The moving average filter is optimal in the sense that it
provides the fastest step response for a given noise reduction.

The matched filter was previously discussed in Chapter 7. As shown in Fig.
17-8a, the filter kernel of the matched filter is the same as the target signal

The Scientist and Engineer's Guide to Digital Signal Processing308

FIGURE 17-8
Example of optimal filters. In (a), three filter kernels are shown, each of which is optimal in some sense. The
corresponding frequency responses are shown in (b). The moving average filter is designed to have a
rectangular pulse for a filter kernel. In comparison, the filter kernel of the matched filter looks like the signal
being detected. The Wiener filter is designed in the frequency domain, based on the relative amounts of signal
and noise present at each frequency.

Sample number
0 10 20 30 40 50

0.00

0.05

0.10

0.15

0.20

0.25

moving average

Wiener

matched

a. Filter kernel

Frequency
0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

b. Frequency response

moving average

Wiener

matched

A
m

pl
itu

de

A
m

pl
itu

de

EQUATION 17-1
The Wiener filter. The frequency response,
represented by , is determined by theH [f]
frequency spectra of the noise, , andN [f]
the signal, . Only the magnitudes areS [f]
important; all of the phases are zero.

H [f] '
S [f]2

S [f]2%N [f]2

being detected, except it has been flipped left-for-right. The idea behind the
matched filter is correlation, and this flip is required to perform correlation
using convolution. The amplitude of each point in the output signal is a
measure of how well the filter kernel matches the corresponding section of the
input signal. Recall that the output of a matched filter does not necessarily
look like the signal being detected. This doesn't really matter; if a matched
filter is used, the shape of the target signal must already be known. The
matched filter is optimal in the sense that the top of the peak is farther above
the noise than can be achieved with any other linear filter (see Fig. 17-9b).

The Wiener filter (named after the optimal estimation theory of Norbert
Wiener) separates signals based on their frequency spectra. As shown in Fig.
17-7b, at some frequencies there is mostly signal, while at others there is
mostly noise. It seems logical that the "mostly signal" frequencies should be
passed through the filter, while the "mostly noise" frequencies should be
blocked. The Wiener filter takes this idea a step further; the gain of the filter
at each frequency is determined by the relative amount of signal and noise at
that frequency:

This relation is used to convert the spectra in Fig. 17-7b into the Wiener
filter's frequency response in Fig. 17-8b. The Wiener filter is optimal in the
sense that it maximizes the ratio of the signal power to the noise power

Chapter 17- Custom Filters 309

Sample number
0 100 200 300 400 500

-0.5

0.0

0.5

1.0

1.5

a. Moving average filter

Sample number
0 100 200 300 400 500

-0.5

0.0

0.5

1.0

1.5

b. Matched filter

FIGURE 17-9
Example of using three optimal filters. These
signals result from filtering the waveform in Fig.
17-7 with the filters in Fig. 17-8. Each of these
three filters is optimal in some sense. In (a), the
moving average filter results in the sharpest
edge response for a given level of random noise
reduction. In (b), the matched filter produces a
peak that is farther above the residue noise than
provided by any other filter. In (c), the Wiener
filter optimizes the signal-to-noise ratio.

Sample number
0 100 200 300 400 500

-0.5

0.0

0.5

1.0

1.5

c. Weiner filter

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de

(over the length of the signal, not at each individual point). An appropriate
filter kernel is designed from the Wiener frequency response using the custom
method.

While the ideas behind these optimal filters are mathematically elegant, they
often fail in practicality. This isn't to say they should never be used. The point
is, don't hear the word "optimal" and stop thinking. Let's look at several
reasons why you might not want to use them.

First, the difference between the signals in Fig. 17-9 is very unimpressive. In
fact, if you weren't told what parameters were being optimized, you probably
couldn't tell by looking at the signals. This is usually the case for problems
involving overlapping frequency spectra. The small amount of extra
performance obtained from an optimal filter may not be worth the the
increased program complexity, the extra design effort, or the longer execution
time.

Second: The Wiener and matched filters are completely determined by the
characteristics of the problem. Other filters, such as the windowed-sinc and
moving average, can be tailored to your liking. Optimal filter advocates would
claim that this diddling can only reduce the effectiveness of the filter. This is

The Scientist and Engineer's Guide to Digital Signal Processing310

very arguable. Remember, each of these filters is optimal in one specific way
(i.e., "in some sense"). This is seldom sufficient to claim that the entire
problem has been optimized, especially if the resulting signals are interpreted
by a human observer. For instance, a biomedical engineer might use a Wiener
filter to maximize the signal-to-noise ratio in an electro-cardiogram. However,
it is not obvious that this also optimizes a physician's ability to detect irregular
heart activity by looking at the signal.

Third: The Wiener and matched filter must be carried out by convolution,
making them extremely slow to execute. Even with the speed improvements
discussed in the next chapter (FFT convolution), the computation time can be
excessively long. In comparison, recursive filters (such as the moving average
or others presented in Chapter 19) are much faster, and may provide an
acceptable level of performance.

